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1 Introduction

In the present work a structural analysis program is developed, tested and results are illustrated on

multiple case studies. The program is coded in Python and is capable of performing nonlinear analyses

on two-dimensional planar structures involving geometric nonlinearities. The load-displacement struc-

tural response can be derived with the program under concentrated load solicitation and the nonlinear

equilibrium path can be derived. The implementation of geometrically nonlinear truss element and

Timoshenko beam-like two-node elements are presented. The formulations are analytically derived in

a Total-Lagrangian formulation approach (TL). Furthermore a Newton-Rhapson resolution method

is implemented in order to solve numerically the nonlinear equilibrium equations. The routine con-

sists in a predictor-correction procedure. In order to correctly follow the load-displacement nonlinear

paths, different methods have been developed. Both the load and displacement control methods are

implemented. These fail following the equilibrium path in particular circumstances and can therefore

present drawbacks. Therefore a Riks arclength path following method has been also developed. This

method is particularly adapt to capture both snap through phenomena and snap-back behaviours in

the structural response.

The developed routine is firstly tested by comparison of the load-displacements curve with the

correspondents derived from literature benchmark problems or analytically derived solutions. Following

the validation a variety of case studies are presented and discussed.

A deeper look into the coding structure and functioning is given in Annex A. Here the coding lines

are shown and the analytically defined vectors, matrices and procedures are recognisable in the coding

python language.

The main achievements and scopes of the present study will be:

• To successfully implement a programming code capable of solving planar structural geometric

nonlinear problem involving frame and trusses;

• learn to code in Python, in particular, aside from the computational mechanics aspects, the

program interface (Fig.1), user input window, internal structure and output tools have been a

crucial part of the work as well;

• to better understand geometric nonlinear phenomena such as hardening and softening behaviours,

snap-through and snap back occurence on multiple case studies;

• to better understand the widely exploited Newton Rhapson algorithm as root finder process;

• to understand how control strategies such as the load control, displacement control and arclength

control methods work.
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Figure 1: user interface of the developed python FEM program

2 General considerations

2.1 Geometric non-linearity

Sources of nonlinearities in mechanical behaviours can derive from:

• material law nonlinearity;

• geometric nonlinearity;

• contact problems (boundary conditions nonlinearity);

• load condition nonlinearity.

How various types of nonlinearities act in a mechanical problem is well depicted in the ”Tonti diagram”

(Fig. 2 and Fig.3).
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Figure 2: relevant relationships in mechanical problems: overview

Figure 3: relevant relationships in mechanical problems: nonlinearity sources

The present work is focused on the study of the geometric nonlinearity and the main scope is

to analyse this phenomena on different case studies with the implemented program. Other types of

nonlinearities coming from material laws, boundary conditions or originated from load conditions are

not considered. Practical application purposes in which taking into account for geometric nonlinearity

is crucial are multiple. Some examples are here listed:

• TAVR (Transcatheter Aortic Valve Replacement) valves in biomedical applications (Fig.?? from

[10]).

• snap through behaviours of low curvature shells and arches.

• second order and postbuckling response in structural civil engineering frames. Taking into ac-

count second order effects is recommended by the international standard design codes like Eu-

rocodes.
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• airspace engineering: many commercial aircraft are designed so that fuselage skins can elastically

buckle (Fig. 5, and Fig.6 from [4]) below limit load and continue to operate safely and efficiently

• the postbuckling favourable contribute shear buckling of steel beam webs (Fig.7 from [?]) is in

bridge engineering checks taken into account according to Eurocode 3 part 1-5 [1].

Figure 4: TAVR valve functioning [10]

Figure 5: buckling of fuselage in airspace engineering
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Figure 6: buckling of fuselage: finite element analysis (FEA) from [4]

Figure 7: shear buckling of steel beam web from

2.2 Equilibrium path

In the present work no account is taken for the dynamical effects. The forces are assumed to be con-

servative. The load is assumed to be slowly applied in order that the successive equilibrium conditions

which are derived reflect a static configuration under a prescribed load condition of the structure. The

successive set of points are referred as ”equilibrim path”. Points belonging to the equilibrium path do

satisfy the relation:

fint = fext Equilibrium condition (1)

This must be satisfied for every part of the structure. The condition may be expressed also as the

stationarity of the Total Potential Energy. the equilibrium condition is therefore strictly related with

the Potential Energy, which is a scalar quantity, and is satisfied when the gradient of the potential

energy function is a zero vector.

∂Π

∂u
= 0 Equilibrium condition (2)

In a FEM discretized approach f int and fext are two vectors, which components represent the nodal

internal and external forces respectively. In the (u,Λ) space, the set of points satisfying the equi-

librium equation belong to the equilibrium path. The equilibrium path can be interpreted as the

load-displacement relation of the structure and reflects the structural response under static conditions.
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In nonlinear problem the equilibrium condition is no more derivable via an effects linear addition.

Moreover the Kirchhoff uniqueness theorem is no more valid and more than one equilibrium configura-

tions can exist under the same load. When a nonlinear problem is considered, the structural response

and the associated load-deformation behaviour can exhibit critical points, softening behaviours, turning

points and bifurcation phenomena. Moreover snap through or snap back can occur.

In general large deformation problems the notion of current configuration and reference config-

urations are introduced (Fig.8). In this work a Total Lagrangian description of the motion will be

adopted. Thus the reference configuration will always be the the undeformed one.

Figure 8: reference and current configuration

2.3 Discretization and FEM approach

In a FEM approach the structure is discretized. Thus, the infinite degrees of freedom describing the

continua structure are reduced to a relevant finite number of degrees of freedom. In order to describe

the displacement and strain field in the intermediate parts of the body, interpolating shape functions

are introduced and the displacement field is expressed as function of the finite number of degrees

of freedom. These relevant displacements, collected in the u vector, constitute the finite number of

degrees of freedom of the discretized FEM structure. Moreover the generic structure is in a FEM

approach reduced into elements, the elements contribution in terms of internal forces and stiffness are

assembled in a global internal force vector and a global stiffness matrix of the structure.

In order to obtain the single elements contributions to the global internal force vector and tangential

stiffness matrix, the element’s formulation has to be developed. The first step in the subsequent

passages will then be the elements formulation. In this work two geometrically nonlinear elements are

developed. The first is a truss type element and the second is a beam type element. Both will be

described in a Total Lagrangian approach.

2.4 Numerical solution

When having a global tangent stiffness matrix of the structure and the internal forces vector both de-

pendent on the current configuration state, a step-by-step procedure of the equilibrium path derivation

should be carried out. In order to do that, a step incrementation strategy should be implemented. Dif-

ferent control methods exist. In this work a load control, a displacement control and a Riks arclength

control strategy will be implemented.
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As last problem, in the resolving procedure, if a non purely incremental analysis is carried out,

correction steps have to be performed in finding the solution to the nonlinear equilibrium equation

after a first predictor step. In order to do that a Newton-Rhapson method is in the present work

described and implemented in the program.

3 Elements formulations

3.1 Truss element in Total Lagrangian description

A Total Lagrangian formulation of a geometrically nonlinear truss element is here described. Reference

is made to [2, 3].

3.1.1 Displacements field description

In the reference configuration:

A0 Cross sectional area in reference configuration (3)

L0 Element length in reference configuration (4)

In the current configuration:

A Cross sectional area in current configuration (5)

L Element length in current configuration (6)

The element’s degree of freedoms are collected in the displacement vector u. The nodal forces are

collected in the vector f .

u =


uX1

uY 1

uX2

uY 2

 =


x1 −X1

y1 − Y1

x2 −X2

y2 − Y2

 f =


fX1

fY 1

fX2

fY 2

 (7)

The displacement field between the nodes is obtained with linear interpolation functions:

N1(ξ) =
1

2
(1− ξ) (8)

N2(ξ) =
1

2
(1 + ξ) (9)

The generic point has coordinates X in the reference configuration:

X(ξ) =

X(ξ)

Y (ξ)

 =

N1(ξ)X1 +N2(ξ)X2

N1(ξ)Y1 +N2(ξ)Y2

 (10)

x(ξ) =

x(ξ)
y(ξ)

 =

N1(ξ)x1 +N2(ξ)x2

N1(ξ)y1 +N2(ξ)y2

 (11)
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Here ξ is the isoparametric master element coordinate in the range [−1, 1]. The displacement field

is expressed as:

u(ξ) = x(ξ)−X(ξ) =

uX(ξ)

uY (ξ)

 =

N1(ξ)uX1 +N2(ξ)uX2

N1(ξ)uY 1 +N2(ξ)uY 2

 (12)

u(ξ) =

N1(ξ) 0 N2(ξ) 0

0 N1(ξ) 0 N2(ξ)

 =


uX1

uX2

uY 1

uY 2

 = N(ξ)u (13)

The element’s lengths in current and reference configurations can be computed as:

L2 = (X21 + uX21)
2 + (Y21 + uY 21)

2 L2
0 = X2

21 + Y 2
21 (14)

3.1.2 Strain-displacements relation

The Green-Lagrange strain is:

e =
L2 − L2

0

2L2
0

=
1

L0
(c0XuX21 + c0Y uY 21) +

1

2L2
0

(u2X21 + u2Y 21) (15)

Here:

c0X =
X21

L0
= cosψ0 (16)

c0Y =
Y21
L0

= sinψ0 (17)

cX =
x21
L0

= cosψ (18)

c0X =
y21
L0

= sinψ (19)

The GL strain can be expressed in a matricial form:

e = B0u+
1

2
uTMu = eL + eN (20)

Here eN is a nonlinear contribute and eL is a linear contribute. Following matrices have been defined:

B0 =
1

L0
{−c0X ,−c0Y , c0X , c0Y } (21)

M =
1

L2
0


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

 (22)

B =
1

L0

[
−cx −cy cx cy

]
= B0 + uTM (23)
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3.1.3 Total potential energy

In the current configuration the total potential energy Π is:

Π = U −W =

∫
V0

t0e+
1

2
Ee2 dV0 − fTu =

∫
L0

A0(t0e+
1

2
Ee2) dX − fTu (24)

In this last relation the integrand is constant. Therefore:

Π = U −W = A0L0

(
t0e+

1

2
Ee2

)
− fTu (25)

3.1.4 Internal forces vector

The residual forces vector is:

r =
∂ Π

∂u
= V0t

∂ e

∂u
− f (26)

The internal forces vector here consists in:

f int,e =
∂ U

∂u
= V0t

∂ e

∂u
(27)

Where:
∂ e

∂u
= BT (28)

The code implementation can be appreciated in Appendix.A.

3.1.5 Tangent stiffness matrix

The tangent stiffness matrix is computed taking the first variation of the internal forces vector:

K =
∂ r

∂u
=
∂ fint

∂u
=

∂

∂u

(
V0t

∂e

∂u

)
= KM +KG (29)

Here:

KL =
EA0

L0


c2 c s −c2 −c s

c s s2 −c s −s2

−c2 −c s c2 c s

−c s −s2 c s s2

 (30)

KG =
F

L0


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

 (31)

The tangent stiffness matrix code implementation can be appreciated in Appendix.A.

3.2 Beam Timoshenko element in Total-Lagrangian description

A geometrically nonlinear beam element is formulated in this section. Reference is done to [5]. This is

done under the assumption of small strains that implies linear-elastic behaviour of the material. The

assumptions of straight element and prismatic beam are considered. The cross-section is therefore

uniform along the longitudinal axis of the element. The element has two nodes and is described in a

Total Lagrangian (TL) kinematics.
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3.2.1 Introduction

In order to introduce the TL description, a current and a reference configuration have to be introduced.

In the reference configuration the X and Y coordinates are introduced. The element has two nodes.

The cross-section rotation from reference to current configuration is called θ.

In Euler-Bernoulli Beam model (Fig.9) no strain energy due to shear stresses is taken into account.

While the longitudinal axis of the element will deform, sections will remain plane and normal to the

longitudinal axis. Here γ = θ − ψ = 0 (Fig.10) holds.

In the Timoshenko model (Fig.9) shear deformation effects are included. The cross section remains

plane but it does not remain orthogonal to the deformed longitudinal axis. The transverse shear stress

is assumed to be constant over the cross section. The shear distortion can be computed as γ = θ − ψ

(Fig.10).

uX1 X1

Y1

X2

Y2

Y1

X2

Y2

u

u

u

1

2

u

u

u

u

1

2

1 2 1 2

(b)  C   (Timoshenko) model

X, x

Y, y

(a)  C  (BE) model1 0

11.4. Two-node beam elements have six DOF, regardless of which model is used.

§11.2.3. Finite Element Models

To carry out the geometrically nonlinear finite element analysis of a framework structure, beam
members are idealized as an assembly of finite elements, as illustrated in Figure 11.3. Beam
elements used in practice have usually two end nodes. The i th node has three DOF: two node
displacements uXi and uY i , and one nodal rotation i , positive counterclockwise in radians, about
the Z axis. See Figure 11.4.

The cross section rotation from the reference to the current configuration is called in both models.
In the BE model this is the same as the rotation of the longitudinal axis. In the Timoshenko
model, the shear distortion angle is , as shown in Figure 11.5. The mean shear strain
has the opposite sign: , so as to make the shear strain eXY positive, as per the

Figure 9: Comparison of Euler-Bernoulli and Timoshenko beam models
§

normal to deformed 
beam axis

Angles are positive
as shown.  Note 
that  =

whereas = = 

90

normal to reference
beam axis X

// X  (X = X)

ds

direction of 
deformed
cross section

  _ _

11.5. Illustrates total and BE section rotations and , respectively, in the plane beam Timoshenko
model. The mean shear distortion angle is , but we take as shear strain measure, to
match usual sign conventions of structural mechanics. For elastic deformations of engineering materials 1.
Typical values for would be O 10 3 radians whereas rotations and may be much larger, say 1-2 radians.

The magnitude of is grossly exaggerated in the Figure for visualization convenience.

This simplicity is even more important in geometrically nonlinear analysis, as strikingly illustrated
by the elements contrasted in Figure 11.6. Although as pictured there both elements have six
degrees of freedom, the internal kinematics of the Timoshenko model is far simpler.

§11.2.4. Shear Locking

In the FEM literature, a BE-based model such as the one shown in Figure 11.4(a) is called a C1

beam because this is the kind of mathematical continuity achieved in the longitudinal direction
when a beam member is divided into several elements (cf. Figure 11.3). On the other hand, the
Timoshenko-based element pictured in Figure 11.4(b) is called a C0 beam because both transverse
displacements, as well as the rotation angle , preserve only C0 continuity.

Figure 10: Sectional rotation in relation with element longitudinal axis

Despite of the fact that in Timoshenko models the inclusion of the shear deformation appears to

complicate the formulation, this kind of element is simpler to be constructed. This is because θ(X) can

be described indipendently from the u(X) and v(X) fields. Thus a linear variation can be assumed to

map both the rotational field and the displacement field. The linear transverse variation matches the
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commonly assumed for the axial deformation like in the previous done description of the truss element.

The transverse and axial displacements are called consistent. In the Euler-Bernoulli element a cubic

interpolation of the displacement field needs to be exploited. This element is often called Hermitian

because from the cubic shape functions used. While in the Euler-Bernoulli formulation at least C1

functions are needed, in Timoshenko the requirement drops to C0 functions. The internal kinematics

of the Timoshenko model is therefore simpler.

An important aspect that needs to be taken into account in the Timoshenko formulation is the

shear locking. This occurs because of the high shear strain energy that would result in an exact

integration with the actual shear properties in order to match the element actual deformation with

the assumed linear field of displacements. To avoid locking some corrections are needed. A selective

integration is done for the shear energy and a residual energy balancing is taken into account. Most

of the shear energy is therefore removed. In this model the modeling of the actual shear deformation

is not the main focus. The actual scope is to capture the correct beam behaviour. Authors underline

that it would be more appropriate to denote the element as ”C0element” rather than ”Timoshenko

element”.

A geometrically nonlinear Timoshenko beam is formulated. In order to formulate the element a

strain measure needs to be exploited by mean of displacement gradients. Work-conjugate stresses

respect to the strain measures are introduced. The final objective is to derive the expression of the

tangent stiffness matrix and internal forces vector as function of the nodal degrees of freedom of the

elements.

The following passages that will be carried out are summarized in the flowchart (Fig.11).
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Eqs (10.5), (10.8)

Eq. (10.9)

Node Displacements  u

Element displacement field  w = [u   , u  , ]

Displacement gradients  w' = [u'  , u'  , ' ]

Generalized strains  h = [ e , ,  ]

Stress resultants  z = [ N ,V, M ]

Strain energy  U

Eq. (10.15)

Eq. (10.29)

T

T

T

T

Tangent stiffness matrix  K =  K   + K M G

Internal forces  p     

Eq. (10.34)

Eq. (10.40)

TT TU =   z  B  dX u =  p  uL 0
vary U:

_

T Tp = (B  z + B   z) dX u =  (K   + K  )
L0

M Gvary p:
_

11.9. Roadmap for the derivation of the TL plane beam element.

the j th column of WN , WV and WM , respectively. The end result isFigure 11: Derivation of tangent stiffness matrix and internal nodal forces vector: general scheme

3.2.2 Displacements field description

Each node (i) has three degrees of freedom which are two translational DOFs (ui and vi) and one

rotational DOF θi. In order to obtain the element formulation, the reference configuration is considered

aligned with the X axis with origin at node 1. The element has length L0 and cross sectional area A0

and second moment I0. These are defined as:

A0 =

∫
A0

dA I0 =

∫
A0

Y 2dA. (32)
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11.7. Lagrangian kinematics of C0 beam element with X -aligned reference configuration: (a)
plane beam moving as a 2D body; (b) reduction of motion description to 1D as measured by coordinate X .

In the current configuration those quantities become A, Izz and L , respectively, but only the current
length L is frequently used in the TL formulation. The material remains linearly elastic, with
Young’s modulus E relating the stress and strain measures defined below.

As in the previous Chapters the element identification superscript e will be omitted to reduce clutter
until it is necessary to distinguish elements within structural assemblies.

The element has the six degrees of freedom depicted in Figure 11.4. These degrees of freedom and
the associated node forces are collected in the node displacement and node force 6-vectors

Figure 12: Displacements mapping

In the current configuration the area is A, the second moment is I and the element’s length is L.

The six degrees of freedom of the element are collected in a single vector u:

u = {u1, v1, θ1, u2, v2, θ2}T (33)

The nodal force vector components are collected in the vector f :

f = {fX1, fY 1, fθ1, fX2, fY 2, fθ2}T (34)

The internal motion is described by:x
y

 =

xC − Y (sinψ + sin γ cosψ)

yC + Y (cosψ − sin γ sinψ)

 =

xC − Y (sin θ + (1− cos γ) sinψ)

yC + Y (cos θ + (1− cos γ) cosψ)

 (35)

with:

θ = γ + ψ x = X + u y = v (36)

The motion description can be expanded into Taylor series in γ up to O(γ4).x
y

 =

u+X + 1/2Y γ3 cos θ − Y (1 + 1/2 · γ2 + 7/24γ4) sin θ

v + Y (1 + 1/2γ2 − 7/24γ4) cos θ + 1/2Y γ3 sin θ

 (37)

Under the assumption of small shear strains θ → 0:x
y

 =

X + u− Y sin θ

v + Y cos θ

 (38)

Note that u(X) and y(X) are functions of X only. An internal extended displacement vector w can

be defined as:

w = {u(X), v(X), θ(X)}T w′ =
dw

dX
= { d u

dX
,
d v

dX
,
d θ

dX
}T = {u′, v′, θ′}T (39)

An arclength coordinate s can be introduced in the current configuration. With this coordinate the

following useful relations hold:

1 + u′ = s′ cosψ v′ = s′ sinψ s′ =
d s

dX
=

√
(1 + u′)2 + (v′)2 (40)
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If u′, v′ are constant over X:

s′ = L/L0 1 + u′ = L cosψ/L0 v′ = L sinψ/L0 (41)

A linear interpolation of the generalized displacements is used in order to describe the displacement

field. Here ξ = 2X/L0 is the isoparametric coordinate ranging form −1 to 1:

w =


u(X)

v(X)

θ(X)

 = 1/2 ·


1− ξ 0 0 1 + ξ 0 0

0 1− ξ 0 0 1 + ξ 0

0 0 1− ξ 0 0 1 + ξ





u1

v1

θ1

u2

v2

θ2


= Nu (42)

The displacement gradient interpolation can be expressed as:

w′


u′(X)

v′(X)

θ′(X)

 = 1/L0 ·


−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1





u1

v1

θ1

u2

v2

θ2


= N ′u (43)

3.2.3 Strain-displacements relation

The strain-displacement relation has to be introduced. In order to do that the deformation gradient

matrix is introduced:

F =

 ∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

 =

1 + u′ − Y χ cos θ − sin θ

v′ − Y χ sin θ cos θ

 (44)

Here χ = θ′ is the curvature. The displacement matrix is:

G = F − I (45)

the Green-Lagrange (GL) strain tensor is computed as:

e =

eXX eXY

eY X eY Y

 = 1/2(F TF − I) = 1/2(G+GT ) (46)

The non-zero axial and shear strains are collected in the strain vector:

e =

e1
e2

 =

 eXX

2eXY

 =

(1 + u′) cos θ + v′ sin θ − Y θ′ − 1

−(1 + u′) sin θ + v′ cos θ

 =

e− Y χ

γ

 (47)

Therefore, the strain quantities are:

e = (1 + u′) cos θ + v′ sin θ − 1 γ = −(1 + u′) sin θ + v′ cos θ χ = θ′ (48)

These are arranged in the vector h:

h = {e, γ, χ}T (49)
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3.2.4 Arbitrarily oriented reference configuration

In the general case the reference configuration (Fig.13) is not aligned with the X axis. Considering an

angle ϕ of rotation:

cosϕ = X21/L0 sinϕ = Y21/L0

Y21 = Y2 − Y1 L2
0 = X2

21 + Y 2
21

(50)

0

=

uX1

1(X ,Y )1 1

1(x  ,y )1 1

2(x  ,y )2 2

2(X ,Y )2 2

uY1
uX2

uY2
1

2

X, x

Y, y

// X

// X

// X
_// Y

_

// Y
_

X
_

Y
_

M0 N 0
V0

M
N

V

0

(a) (b)

11.8. Plane beam element with arbitrarily oriented reference configuration:
(a) kinematics, (b) internal stress resultants.

Solving the foregoing trigonometric relations for gives

cos
X21x21 Y21 y21

L L0

X21 X21 u X2 u X1 Y21 Y21 uY 2 uY 1

L L0

sin
X21 y21 Y21x21

L L

X21 Y21 uY 2 uY 1 Y21 X21 uX2 uX1

L L

11 31

Figure 13: Arbitrarily oriented reference configuration

The angle Φ = ψ + ϕ is derived by:

cosΦ = cosψ + ϕ = x21/L sinΦ = sinψ + ϕ = y21/L (51)

With:

x21 = X21 + u2 − u1 y21 = Y21 + v2 − v1 (52)

The length L in the current configuration is obtained by:

L2 = x221 + y221 (53)

3.2.5 Constitutive equations

The material is assumed to be elastic, homogeneous and isotropic. The only non-zero Piola-Kirchhoff

stresses are the sXX and sXY components. The stress vector s is related to the GL strains with the

following relation:

s =

sXX

sXY

 =

s1
s2

 =

s01 + Ee1

s02 +Ge2

 =

s1
s2

+

E 0

0 G

e1
e2

 = s0 +Ee (54)

In the current configuration the axial force N , the transverse shear force V and the bending moment

M can be expressed as:

N = N0 + EA0e V = V 0 +GA0γ M =M0 + EI0χ (55)

The stress resultant vector z is:

z = {N,V,M}T (56)
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3.2.6 Strain energy

Due to the fact that the separability of the residual equation holds, the strain internal energy is:

U =

∫
V0

(s0)Te+ 1/2eTEedV (57)

By computing the area integrals this gets:

U =

∫
L0

N0e+ 1/2EA0e
2 dX +

∫
L0

V 0γ + 1/2GA0γ
2 dX +

∫
L0

M0χ+ 1/2EI0χ
2 dX (58)

3.2.7 Internal force vector

The internal force vector is derived by considering the first variation of the internal energy U .

δU = pT δu =

∫
L0

(Nδe+ V δγ +Mδχ) dX =

∫
L0

zT δh dX =

∫
L0

zTB dX δU (59)

This expression can be computed by a one point Gauss integration with sample point at ξ = 0. In the

next passages the subscript m stands for ”midpoint” of the beam element. The following quantities

are defined:

θm = (θ1 + θ2)/2 ωm = θm + ϕ cm = cosωm sm = sinωm (60)

em = L cos (θm − ψ)/L0 − 1 γm = L sinψ − θm/L0 (61)

The matrix B is computed as:

Bm = B(ξ = 0) =
1

L0


−cm −sm −1/2L0γm cm sm −1/2L0γm

sm −cm 1/2L0(1 + em) sm −cm 1/2L0(1 + em)

0 0 −1 0 0 1

 (62)

The following expression is valid in order to compute the internal forces vector:

p = L0B
T
mz =


−cm −sm −1/2L0γm cm sm −1/2L0γm

sm −cm 1/2L0(1 + em) sm −cm 1/2L0(1 + em)

0 0 −1 0 0 1


T 

N

V

M

 (63)

3.2.8 Tangent stiffness matrix

The first variation of the internal force p defines the tangent stiffness matrix:

δp =

∫
L0

BT δz + δBTz dX = (KM +KG)δu = Kδu (64)

Here KM and KG are respectively the material and the geometric stiffness matrix. The material

stiffness matrix is derived by considering the variation of the stress while keeping constant the term

B. Thus:

δz =


δN

δV

δM

 =


EA0 0 0

0 GA0 0

0 0 EI0



δe

δγ

δχ

 = Sδh (65)
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By substituting the expressions of δh = Bδu and the term BT δz:

KM =

∫
L0

BTSB dX = Ka
M +Kb

M +Ks
M (66)

Again the integral is computed by exploiting a one Gauss integration point at ξ = 0. Here a1 = 1+em:

Ka
M =

EA0

L0



c2m cmsm −cmγmL0/2 −c2m −cmsm −cmγmL0/2

cmsm s2m −γmL0sm/2 −cmsm −s2m −γmL0sm/2

−cmγmL0/2 −γmL0sm/2 γ2mL
2
0/4 cmγmL0/2 γmL0sm/2 γ2mL

2
0/4

−c2m −cmsm cmγmL0/2 c2m cmsm cmγmL0/2

−cmsm −s2m γmL0sm/2 cmsm s2m γmL0sm/2

−cmγmL0/2 −γmL0sm/2 γ2mL
2
0/4 cmγmL0/2 γ2mL

2
0/4


(67)

Kb
M =

EI0
L0



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 0 0 1


(68)

Ks
M =

GA0

L0



s2m −cmsm −a1L0sm/2 −s2m cmsm −a1L0sm/2

−cmsm c2m cma1L0/2 cmsm −c2m cma1L0/2

−a1L0sm/2 cma1L0/2 a21L
2
0/4 a1L0sm/2 −cma1L0/2 a21L

2
0/4

−s2m cmsm a1L0sm/2 s2m −cmsm a1L0sm/2

cmsm −c2m −cma1L0/2 −cmsm c2m −cma1L0/2

−a1L0sm/2 cma1L0/2 a21L
2
0/4 a1L0sm/2 −cma1L0/2 a21L

2
0/4


(69)

The geometric stiffness matrix KG derives from the variation of B with fixed stress vector z. In

the next expression the index summation from Einstein is exploited:

KGijδuj =

∫
L0

δBTz dX =

∫
L0

∂ Bki

∂uj
δujzk dX =

∫
L0

Aj
kizkdXδuj (70)

In the next relation Vm and Nm are the values of V and N computed in ξ = 0. The geometric stiffness

matrix can be computed as KG = KGN +KGV , where these are defined as follows:

KGN =
Nm

2



0 0 sm 0 0 sm

0 0 −cm 0 0 −cm
sm −cm −1/2L0(1 + em) −sm cm −1/2L0(1 + em)

0 0 −sm 0 0 −sm
0 0 cm 0 0 cm

sm −cm −1/2L0(1 + em) −sm cm −1/2L0(1 + em)


(71)
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KGV =
Vm
2



0 0 cm 0 0 cm

0 0 −sm 0 0 −sm
cm sm −1/2L0γm −cm −sm −1/2L0γm

0 0 −cm 0 0 −cm
0 0 −sm 0 0 −sm
cm sm −1/2L0γm −cm −sm −1/2L0γm


(72)

4 Solution method

In general the analytical solution to the problem of deriving the load-displacement curve is represented

by a system of nonlinear partial differential equations.

Once the system is discretized the obtained system of N equations can be written as:

r(u,Λ) = 0 (73)

Or equivalently:

ri(u1, u2, ...uN ,Λ1,Λ2, ...,ΛM ) = 0 for i = 1, ..., N (74)

Here u is the state vector, which is the displacements vector containing as components all the general-

ized coordinates uj for j = 1, ..., N of the studied structure, Λ is the vector containing as components

the control parameters Λk for k = 1, ...,m. In the present study, just one control parameter is consid-

ered and the control parameters vector Λ contains just one component, namely λ. A further hypotheses

here introduced is that the external nodal forces vector is proportional to the load parameter λ:

fext(λ) = λ · fref (75)

Under these circumstances the hypotheses of proportionality holds. Note that in this case also the

external work will be proportional to the load parameter:

W (u, λ) ∝ λ (76)

In this case the incremental load vector is constant and equal to the reference vector fext:

f ′
ext =

∂fext(λ)

∂λ
= fref (77)

Another hypotheses valid for the present study purposes is that the external forces nodal vector

fext does not depend on the generalized coordinates. It does not in fact depend on the state vector

u. Thus, the vector is just dependent on the control parameter λ:

fext(λ) (78)

In this case the hypothesis of separable equations stands, thus the residuals are separable. The equa-

tions system can be written as:

f int(u) = fext(λ) → r(u, λ) = f int(u)− fext(λ) (79)
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This hypotheses would not hold for example in case of follower load. In this case the external load

forces vector would depend also on the state of the system u.

Differently, under separable equations hypotheses, the tangent stiffness matrix K can be identified

as:

Ktan(u) =
∂r

∂u
=
∂f int

∂u
(80)

In order to follow the load displacement curve, the general method is structured in order to see the

state vector u and the load parameter λ as function of an evolution parameter t. This parameter is

referred as pseudotime parameter. Note that in the present study no dynamical problem is considered.

Thus the reference to time does not have to be confused to the real time flowing. In this hypotheses the

system evolution {u(t), λ(t)} is a curve in the displacements-load space described by the pseudotime

parameter t. Here is convenient to introduce a compact notation in order to identify the curve in the

displacements-load space:

x(t) = {u(t), λ(t)} (81)

The vector x(t) contains all the N + 1 unknowns of the system. If the derivative with respect to the

pseudotime t is considered, a velocity vector can be derived at each point of the curve x(t) provided

that the curve is smooth (C1). The velocity vector is:

ẋ(t) = {u̇, λ̇} (82)

If the displacement vector u is interpreted as a function of the control parameter λ, the composed

function can be derived as:

u(t) = u(λ(t)) (83)

An important observation is that while the values ui(t) and λ(t) are all univocally defined for one value

of t and are functions, the values ui(λ) can loose the function property as to one value of λ more than

one values of ui can be related.

Taking into account the composition of these relations, the following can be written exploiting the

chain rule of derivatives:

u̇ =
∂u

∂t
=
∂u

∂λ
· ∂λ
∂t

= v · λ̇ (84)

λ̇ =
∂λ

∂t
=
∂λ

∂λ
· ∂λ
∂t

= 1 · λ̇ (85)

In the previous relation the vector v is the incremental velocity vector and can also be written as:

v = u′ (86)

Here the prime indicates the derivative respect to the control parameter λ. Thus, the velocity vector

ẋ(t) can be written as:

ẋ(t) = {u̇, λ̇} = {v, 1} · λ̇ (87)

Here we define:

t = {v, 1} (88)
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Note that if the curve is smooth the velocity vector ẋ(t) exists and it is tangent to the curve x(t). Due

to the fact that λ̇ is a scalar, also the vector t is tangent to the curve. A local tangent versor can be

derived via normalization of this vector:

t̂ = 1/f · {v, 1} (89)

Where f is the norm of the vector:

f =
√
1 + v · v (90)

If the first order incremental form of the residual equations is considered a relation linking the reference

external nodal force vector fref and the incremental velocity v can be derived:

ṙ = 0 → ḟ int = ḟext (91)

Ktanu̇ = λ̇fref → Ktanu
′ · ∂λ
∂t

= 1 · ∂λ
∂t

fref (92)

Thus the following equation holds:

Ktanu
′ = fref (93)

By inverting this relation:

u′ = (Ktan)
−1fref (94)

4.1 Newton-Rhapson method

Finding the solution to the system r(u, λ) = 0 for the current increment in the current load step means

finding the particular state vector u and control parameter λ that satisfy the condition of balancement

for a given pseudotime value. In order to find the solution of a nonlinear system of equations many

methods can be found in literature. The various procedure can be distinguished on the order of the

algorithm:

• zero order methods do not need the numerical or analytical providing of the gradient (jacobian)

of the objective function.

• in first order methods the gradient of the objective function has to be provided. This can be done

by exploiting an analytical expression of the matrix or a numerical computation of it. Obviously

an explicit expression can favourably condition the computational efficiency.

• second order method, exploiting the Hessian of the functions. This takes into account also the

local curvatures.

The balance force equation r = f int(u) − fext(λ) is a system of N equations. The system at

the considered increment of the given step is described by the vector u and the control parameter

λ. Therefore there are N + 1 unknowns to be determined. In order to close the equations system

an additional equation has to be enclosed, this is the constraint equation, describing how the load
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increment ∆λ should relate with the displacement increment ∆u following the pseudotime evolution.

This relation is generally given by an equation of the following form:

c(∆u,∆λ) = 0 (95)

The constraints equations will be explicitly introduced in the subsequent sections. The adopted relation

is strictly linked with the control strategy exploited.

By collecting the equations r = 0 and c = 0 in one single vector we define an extended residual

vector r̃:

r̃ =

r

c

 (96)

In the present study a Newton-Rhapson method is implemented in order to find the root of the

nonlinear system at the given increment. The solution at the considered step for the increment j − 1

is known. The objective is to find the solution xj = {uj , λj} for the next increment j that satisfies

the balance equation. In order to do that an iterative process is used. The index k indicates in the

following passages the iteration number. In a particular iteration k of the process the state vector

uj,k and the value of λj,k are known. The scope is to correct the point xj,k = {uj,k, λj,k} into

xj,k+1 = {uj,k+1, λj,k+1} in order to get closer to the point that satisfy r = 0. At the current iteration

the residual condition is not in general satisfied:

r̃j,k(xj,k) = f int(uj,k)− fext(λj,k) ̸= 0 (97)

The residual function is expanded locally into Taylor series functions. If the first order is considered

the n− th component of the residual will be:

r̃(u+ du, λ+ dλ) ≈ r̃(u, λ) +
∂r̃

∂u
· du+

∂r̃

∂λ
· dλ (98)

In order to do that a gradient following (Fig.14) approach is used:

xj,k+1 = xj,k −
(
∂r̃

∂x

)−1

j,k

r̃j,k (99)

More explicitly:

∆xj,k+1 = xj,k+1 − xj,k =

∆uj,k+1

∆λj,k+1

 = −
(
∂r̃

∂x

)−1

j,k

r̃j,k = −
(
∂r̃

∂x

)−1

j,k

rj,k

cj,k

 (100)
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Figure 14: Newton-Rhapson solution update iteration scheme

This equation allows to compute the increments in the displacements and the load parameter λ.

Here the matrix multiplying the residual is the jacobian of the function r̃(x):

J =
∂r̃

∂x
Jacobian (101)

The jacobian is a (N + 1)× (N + 1) matrix. The components are:

Jnm =
∂r̃n
∂xm

for n,m = 1, 2, ..., N + 1 (102)

As the function r̃(x) and the variables x are divided in two blocks, so will be the jacobian. For the

indexes m,n = 1, .., N the x components are the displacements u and the residuals r̃ are the balance-

ment equation components r. Therefore the jacobian components will coincide with the components

of the tangent stiffness matrix Ktan, in fact:

∂r̃n
∂xm

=
∂rn
∂um

=
∂(fint,n(u)− fext,n(λ))

∂um
=
∂fint,n(u)

∂um
= Ktan,nm for n,m = 1, ..., N (103)

For n = 1, ..., N and m = N + 1 the r̃ vector consists in the vector r and the N + 1− th component

of the vector x is the control parameter λ. Thus:

∂r̃n
∂xm

=
∂rn
∂λ

=
∂(fint,n(u)− fext(λ))

∂λ
= −∂fext,n(λ)

∂λ
= −∂(λ · fref,n))

∂λ
= −fref,n for n = 1, ..., N m = N+1

(104)

For n = N + 1 and m = 1, ..., N the considerd component of the residual vector r̃ coincides with

the constraint function c(u, λ) and the considered components of x are those of the state vector u.

Therefore:

am :=
∂r̃n
∂xm

=
∂c(u, λ)

∂um
for n = N + 1 m = 1, ..., N (105)

Here a vector of dimension N named a was defined. For n = N + 1 and m = N + 1 the considered

component of the residual vector r̃ coincides with the constraint function c(u, λ) and the considered
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component of x is the control parameter λ. Therefore:

g :=
∂r̃n
∂xm

=
∂c(u, λ)

∂λ
for n = N + 1 m = N + 1 (106)

Here a scalar quantity g was defined.

J =

Ktan −fref

aT g

 =


K11 ... K1N

... ... ...

KN1 ... KNN

−fref,1
...

−fref,N

a1 ... aN g

 (107)

4.2 Control strategies

In order to follow the load-displacement path, different types of control methods can be found in

the literature. These can be load control, displacement control or arclength control methods. The

arclength control strategy can be subdivided into normal plane, hyperspherical, global hyperelliptical

or local hyperelliptical approach. Here a predictor-corrector method is used. The examined strategies

are load, displacement and Riks arclength control methods.

4.2.1 Load control method

In the load control method the load increment ∆λ is constrained to be a specified value. Therefore,

the constraint equation is:

c(∆λ) = ∆λ−∆l = 0 (108)

The predictor step trivially consists in updating the value of λ to the successive value. The NR method

successively corrects the x solution. Note that in this case the constraint function c is not dependent

by the displacements vector u. The vector u and the parameter λ can be written more explicitly:

c(λ− λk) = λ− λk −∆l = 0 (109)

In these circumstances the vector a and the scalar g are:

a =
∂c

∂u
= 0 (110)

g =
∂c

∂λ
= 1 (111)

This procedure is not capable of passing the critical points.

4.2.2 Displacement control method

In the displacement control method the displacement increment ∆um of one the m − th degree of

freedom is constrained to be a specified value. Therefore, the constraint equation is:

c(∆um) = ∆um −∆l = 0 (112)
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The predictor step trivially consists in updating the value of the prescribed displacement ui to the

successive value. The NR method successively corrects the x solution. Note that in this case the

constraint function c is not dependent by the load parameter λ. The vector u and the parameter λ

can be written more explicitly:

c(um − um,k) = um − um,k −∆l = 0 (113)

In these circumstances the vector a and the scalar g are such that:

ai = δim =

1 if i = m

0 if i ̸= m

for i = 1, ..., N (114)

g = 0 (115)

This procedure is capable of passing the critical points but will not pass the turning points.

4.2.3 Arclength control method

In the Riks arclength method a plane normal to the local tangent vector computed in the last known

configuration that satisfies r̃ = 0 is considered. The constraints equation impose that the considered

increment should have a prescribed distance with respect to the local normal plane (Fig.15). In order to

do that the component x// of the incremental vector projected on the local tangent vector is considered:

x// = {∆u,∆λ} · {v/f, 1/f} (116)

The value of x// can be interpreted as the distance from the considered point from the local normal

plane. This component is constrained to be equal to a prescribed distance with respect the local normal

plane:

c(∆u,∆λ) = 1/f · (v ·∆u+ 1 ·∆λ)− l = 0 (117)

In this case:

a = v/f (118)

g = 1/f (119)
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Figure 15: Arclength method solution predictor-correction scheme

In [13] a predictor-corrector approach is described. This method is here implemented in order to

run the nonlinear analyses with a Riks arclength control pathfollowing method.

5 Case studies: truss structures

5.1 Von Mieses truss

A simple truss structure is here studied, known in literature as Von Mieses (VM). The structure is

composed of two elements. Two different h/a ratios are examined reflecting the intent to study the

different behaviour of a deep VM truss and a shallow VM truss. Following properties are used:

Properties

a = 1000mm Half basis

h/a Height-half basis ratio

A = 100mm2 Cross-sectional area

E = 100N/mm2 Elastic modulus

5.1.1 Shallow truss

In this case h/a = 0.3 ratio is used. The expected behaviour can be derived analytically. The member

length as function of the vertical displacement v is:

L2(v) = (h− v)2 + a2 (120)

The length of the member in the reference (non-deformed) configuration is:

L2
0(v) = L2(v = 0) = h2 + a2 (121)
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The Green-Lagrange strain can be derived as follows:

e(v) =
L(v)2 − L2

0

2L2
0

GL strain (122)

The member compression force is:

N(v) = EA · e(v) (123)

The applied load should be equal to the internal forces, which are obtained by considering the vertical

component of the member compression force:

P (v) = 2 (h− v)/L(v)N(v) (124)

The force P (v) is plotted as function of v in the range [0, 2h] in Fig.19.

Figure 16: Analytical solution of load-displacement curve for the shallow Von Mieses truss problem

The structure is discretized with one truss FEM element per each element (Fig. 17). Resulting

charts are shown in Fig.18. Results are in good agreement with the analytical solution. Note that

the determinant presents significant reduction in correspondence of the two critical points. No other

reductions are reported. The different animation frames are illustrated in Fig.19.
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Figure 17: Shallow Von Mieses truss: geometry, discretization , restraints and loading conditions
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Figure 18: Shallow Von Mieses truss: resulting charts
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Increment= 0
Increment= 300
Increment= 600
Increment= 900
Increment= 1200
Increment= 1500

Figure 19: Shallow Von Mieses truss: animation frames for different increments

5.1.2 Deep truss

In this case h/a = 3 ratio is used. Geometry is shown in Fig. 20. Results are shown in Fig.21 with the

progressive motion shown in Fig.22. The structure exhibits snap through behaviour. Differently from

the shallow truss case, the determinant shows a significant reduction in the first hardening branch.

This fact is given by a bifurcation path that is further analysed by giving the truss a positive small

horizontal force at the top node. Results of this case are shown in Fig. 23 and the animation frames

are in Fig.24.
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Figure 20: Deep Von Mieses truss: geometry, discretization, restraints and loading conditions
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Figure 21: Deep Von Mieses truss: resulting charts
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Figure 22: Deep Von Mieses truss: animation frames for different increments
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Figure 23: Deep Von Mieses truss with small horizontal force: resulting charts
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Figure 24: Deep Von Mieses truss: animation frames for different increments

5.2 Shallow arch truss

A shallow arch truss structure is here studied. The truss structure is composed of 131 truss elements.

The arch ends are clamped. A vertical load is applied at the top node. A Riks arclength control

method is exploited. Following properties are used:

Properties

∆R = 0.2m Arch thickness

1/R = 0.2 1/m Arch curvature

h = 1m Hogging height

A = 0.001m2 Cross-sectional area

E = 10000 kN/m2 Elastic modulus

The structure is discretized with one truss FEM element per each element (Fig. 25). Resulting

charts are shown in Fig.26. The structure presents a snap through behaviour. Note that the determi-

nant presents significant reduction in correspondence of the two critical points. No other reductions

are reported. The different animation frames are illustrated in Fig.19.
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Figure 25: Shallow arch truss: geometry, discretization, restraints and loading conditions
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Figure 26: Shallow arch truss: resulting charts
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Figure 27: Shallow arch truss: animation frames for different increments

5.3 Cantilever truss

A cantilever restrained truss structure is studied. The structure is loaded with a force at the top end

node. The displacement control method is used. Properties are:

Properties

L = 4.5m Total truss length

h = 0.5m Truss height

A = 0.01m2 Cross-sectional area

E = 1000 kN/m2 Elastic modulus

The structure is discretized with one truss FEM element per each element (Fig. 28). Resulting

charts are shown in Fig.29. The structure presents hardening behaviour as the fibres align to the load

axis. The different animation frames are illustrated in Fig.30.
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Figure 28: Cantilever truss: geometry, discretization, restraints and loading conditions
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Figure 29: Cantilever truss: resulting charts
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Figure 30: Cantilever truss: animation frames for different increments

6 Case studies: frame structures

6.1 Cantilever beam under increasing end moment

A first validation consists in verifying that under an increasing concentrated moment at end-node the

structure will deform in a circular manner after a rotation of the end-node of 2 ·π. This is a benchmark

problem often exploited that can be found for example in []. Validation is also driven by commune own

experience: trying to bend an elastic rod with a uniform moment results in a circular configuration.

The structure consists in a single clamped rod with an end moment. The considered properties are:

Properties

L = 10m Rods length

A = 1m2 Cross-sectional area

J = 1m4 Second moment of section

E = 1 kN/m2 Elastic modulus

ν = 0.3 Poisson ratio

The load is positioned at the end node. The structure is discretized with 40 Timoshenko elements.

The geometry, constraints and load condition is depicted in Fig.31. A displacement control method

is exploited. The controlled degree of freedom is the rotational of the end node. The number of

increments is set to 100. The rotation is incremented from 0 to 2π. Results are shown in Fig.32.

The deformed configurations for different increments are depicted in Fig.33. At the last increment the

expected circular configuration is reached. The structure exhibits pure linear hardening behaviour and

a load control method could had been used as well.
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Figure 31: Cantilever beam with end moment: geometry, discretization, restraints and loading condi-

tions
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Figure 32: Cantilever beam with end moment: resulting charts
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Figure 33: Cantilever beam with end moment: animation frames for different increments

6.2 Cantilever beam under increasing end force

A second case examines the same structure as the one studied in the previous case but under different

load conditions. Here a point load is considered at the end node. A load control method is used in

order to derive the beam response. Results are compared with those in [9] and [8]. Following properties

are used:

Properties

L = 1m Column length

A = 0.012m2 Cross-sectional area

J = 1m4 Second moment of section

E = 1 kN/m2 Elastic modulus

ν = 0.3 Poisson ratio

The structure is discretized with 20 elements as shown in Fig.35. Results are outlined in Fig.34

and the different configurations for increasing increments are shown in Fig.36. The results are in good

agreement with those presented in [9, 8] and shown in figure Fig.37. As the load increases the structure

fibres align to the load axis. The member starting from a purely flexural behaviour correctly captured

in a small displacements elastic linear analysis, gradually enters in a membrane behaviour and starts

working in a tensile state. This is the reason of the hardening behaviour of the structure. In an

analogy this is also what happens when a polymeric structure is stressed under a tensile state as the

polymeric chains forming the microstructure of the materials (firstly randomly oriented) start to align

to the loading axis.
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Figure 34: Cantilever beam with end force: geometry, discretization, restraints and loading conditions
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Figure 35: Cantilever beam with end force: resulting charts
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Increment= 0
Increment= 10
Increment= 20
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Figure 36: Cantilever beam with end force: animation frames for different increments

Figure 37: Cantilever beam with end force: literature results from [9, 8]
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6.3 Buckling of a pinned-roller compressed column

One of the common applications of a nonlinear analysis is to examine the buckling and post-buckling

behaviour of compressed members. A typical problem is represented by the compressed rod restrained

by pinned-roller configuration. In this case an analytical comparison is possible. The analytical solution

can be derived by mean of elliptic integrals. Image Fig.38 (source [6]) represents the load-end rotation

behaviour of the column derived analytically. Black circle points are bifurcation points.
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Figure 38: Buckling of column, analytical solution (from [6])

Following properties are considered:

Properties

L = 10m Column length

A = 100m2 Cross-sectional area

J = 10m4 Second moment of section

E = 1 kN/m2 Elastic modulus

G = 1 kN/m2 Shear modulus

The exploited control method is a load-control method. This is possible because the post buckling

behaviour has a pure hardening branch. No softening behaviour occurs. The analysed load multiplier

range will be changed in relation with the examined buckling mode.

The buckling mode is triggered by giving the column a sinusoidal imperfection:

y(x) = e0 · sin (m · πx/L·) (125)

Here x and y are the nodal coordinates, with x ranging in 0 to L. Where e0 = and the parameter m

is an integer that refers to the mode that needs to be triggered. Thus for buckling mode 1 m = 1 will

be set, for buckling mode 2 m = 2 and so on. For each buckling mode the relevant critical load can be

computed exploiting the Euler formula:

Pcr =
m2π2

L2
· EJ (126)
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By substituting the used values:

Pcr =
m2π2

100
· 10 ≈ m2 (127)

The structure is discretized with a fine mesh of 100 Timoshenko elements.

6.3.1 Buckling mode 1

The first buckling mode is triggered with an imperfection with parameter e0 = 0.05. The parameter

m = 1 is used. A divergence instability is expected due to the small imperfection, with the main load

path lying progressively to the bifurcated path. The meshing and load and restraint condition are

shown in figure Fig.39. Critical load is expected at around Pcr = m2 = 1 kN . the results and the

deformed configurations for different increments are shown respectively in figures Fig.40 and Fig.41.

The load increases linearly for increasing increments as a consequence of the load control method

choice. The determinant appears having a first decrease in correspondence of λ = Pcr ≈ 1 kN . A

second sharper decrease happens at around λ = 2 kN . There, probably the bifurcation showed before

(Fig.38) happens. This was however not further examined in this study. Note that before buckling

arises, a small deformation appears for loads smaller than Pcr. This is consequence of the finite axial

stiffness EA of the column.
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Figure 39: Column buckling mode 1: geometry, discretization, restraints and loading conditions
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Figure 40: Column buckling mode 1: resulting charts
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Figure 41: Column buckling mode 1: animation frames for different increments

6.3.2 Buckling mode 2

The second buckling mode is triggered with an imperfection with parameter e0 = 0.05. The parameter

m = 2 is used. A divergence instability is expected due to the small imperfection, with the main load

path lying progressively to the bifurcated path. The meshing and load and restraint condition are

shown in figure Fig.42. Critical load is expected at around Pcr = m2 = 4 kN . the results and the

deformed configurations for different increments are shown respectively in figures Fig.43 and Fig.44.

The load increases linearly for increasing increments as a consequence of the load control method choice.

The determinant appears having a first decrease in correspondence of λ = Pcr(m = 1) ≈ 1 kN . This

is because the first buckling mode (studied before) is skipped by the structure. A second minimum

appears for λ = Pcr(m = 2) ≈ 4 kN . This is the second buckling load. A third sharper decrease

happens at around λ = 8 kN . This was however not further examined in this study. The same further

considerations can be done as the mode 1 case.
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Figure 42: Column buckling mode 2: geometry, discretization, restraints and loading conditions
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Figure 43: Column buckling mode 2: resulting charts
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Figure 44: Column buckling mode 2: animation frames for different increments

6.3.3 Buckling mode 3

The third buckling mode is triggered with an imperfection with parameter e0 = 0.05. The parameter

m = 3 is used. A divergence instability is expected due to the small imperfection, with the main

load path lying progressively to the bifurcated path. The meshing and load and restraint condition are

shown in figure 45. Critical load is expected at around Pcr = m2 = 9kN . The results and the deformed

configurations for different increments are shown respectively in figures Fig.46 and Fig.47. The load

increases linearly for increasing increments as a consequence of the load control method choice. The

determinant clearly decreases with the structure passing at the load levels of the previous two buckling

modes. Another sharp decrease is observed in the post-buckling branch.
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Figure 45: Column buckling mode 3: geometry, discretization, restraints and loading conditions
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Figure 46: Column buckling mode 3: resulting charts

48



Increment= 0
Increment= 10
Increment= 20
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Increment= 60
Increment= 70
Increment= 80
Increment= 90
Increment= 100

Figure 47: Column buckling mode 3: animation frames for different increments

6.4 Lee’s frame

In this section the resolution of a benchmark problem often referred in literature as ”Lee’s frame” is

solved. Reference to the results obtained in [7] is made. This work was validated on the basis of [12]

that contains other useful reference. Further reference can be made to [11]. The structure consists in

two perpendicular elastic rods. These have the following properties:

Properties

L = 120 cm Rods length

A = 6 cm2 Cross-sectional area

J = 2 cm4 Second moment of section

E = 720 kN/cm2 Elastic modulus

ν = 0.3 Poisson ratio

The load is positioned at a distance of 24 cm from the node connecting the two rods. In analogy

with the work of [7], the structure is discretized with ten Timoshenko elements for each rod. The

geometry, constraints and load condition is depicted in Fig.48. The monitored degree of freedom is

the vertical displacement of the loaded node. The structure is solved exploiting the implemented Riks

arclength pathfollowing method with a single step and a total of 500 increments. The value of arc

length increment is set to ∆s = 1.3. Results are shown in Fig.49. The deformed configurations for

different increments are depicted in Fig.50. Results are in good agreement with the reference works

of [7] and [12]. The structure exhibits snap back behaviour with multiple turning points and critical

points. Note that the determinant presents significant reduction in correspondence of the critical

points.
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Figure 48: Lee’s frame: geometry, discretization, restraints and loading conditions
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Figure 49: Lee’s frame: resulting charts
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Increment= 0
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Figure 50: Lee’s frame: animation frames for different increments

24 96

1
20

Figure 51: Lee’s frame: literature results from [7]. Good agreement with the present study results can

be seen from comparison of the vertical displacement evolution
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6.5 Frame lateral instability

A frame composed of two vertical columns and one horizontal beam is studied. Base restraints consist

in pinned ends. The purpose is to study the frame’s lateral instability behaviour and the post-buckling

response. In order to trigger the lateral instability a small horizontal load is set. The lateral instability

consists in a bifurcated path respect to the main load path. The main load path will also be shown. The

Riks arclenght control stratecy is exploited. The load is applied at mid-span of the beam. Following

properties are exploited:

Properties

L = 10000mm Rods length

A = 100 cm2 Cross-sectional area

J = 10000 cm4 Second moment of section

E = 200000MPa Elastic modulus

ν = 0.3 Poisson ratio

Geometric configuration, load disposition and meshing are shown in figure ??. The mesh consists

in 30 Timoshenko elements per each rod. The load path is derived with 500 increments.

6.5.1 Lateral instability
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Figure 52: Portal lateral instability: geometry, discretization, restraints and loading conditions
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Figure 53: Portal lateral instability: resulting charts
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Increment= 0
Increment= 50
Increment= 100
Increment= 150
Increment= 200
Increment= 250
Increment= 300
Increment= 350
Increment= 400
Increment= 450
Increment= 500

Figure 54: Portal lateral instability: animation frames for different increments

6.5.2 Main load path

In this case no lateral force is applied in order to trigger the lateral instability. Results are shown in

figures Fig.56 and Fig.57. The structure exhibits a softening behaviour after a critical load. Note that

the determinant decreases in correspondence of the load level at which the previous studied case was

exhibiting the lateral instability starting to take the bifurcated path.
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Figure 55: Portal main load path: geometry, discretization, restraints and loading conditions
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Figure 56: Portal main load path: resulting charts
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Increment= 0
Increment= 50
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Increment= 150
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Increment= 250
Increment= 300
Increment= 350
Increment= 400
Increment= 450
Increment= 500

Figure 57: Portal main load path: animation frames for different increments

6.6 Shallow arch

A shallow arch is resolved. The arch is loaded with a vertical force impressed at the top node. Following

properties are exploited:

Properties

R = 100 cm Radius

θ = 2 · 20.3 = 40.6 Arch angle

J = 1 cm4 Second moment of section

A = 1 cm2 Second moment of section

E = 200N/cm2 Elastic modulus

ν = 0.5 Poisson ratio

6.6.1 Main path

The number of elements used is 50 Timoshenko elements (Fig.58). The structure exhibits snap through

behaviour Fig.59. The animation frames can be appreciated in Fig.60. The determinant has a reduction

on the first loading branch before the critical point occurs. This consists in a bifurcation point which

is further examined below.
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Figure 58: Pinned shallow arch main path: geometry, discretization, restraints and loading conditions
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Figure 59: Pinned shallow arch main path: resulting charts
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Increment= 0
Increment= 100
Increment= 200
Increment= 300
Increment= 400
Increment= 500

Figure 60: Pinned shallow arch main path: animation frames for different increments

6.6.2 Bifurcated path

The structure bifurcated path is triggered with a small point moment at the tip of the arch structure

(Fig.61). Results are shown in Fig.62. The animation frames can be appreciated in Fig. 63.
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Figure 61: Pinned shallow arch bifurcated path: geometry, discretization, restraints and loading con-

ditions
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Figure 62: Pinned shallow arch bifurcated path: resulting charts
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Increment= 0
Increment= 100
Increment= 200
Increment= 300
Increment= 400
Increment= 500

Figure 63: Pinned shallow arch bifurcated path: animation frames for different increments

6.7 Deep arch

A round arch structure is studied here. Reference to results contained in [7, 14] is made.

Properties

R = 127 cm Radius

θ = 2 · 90 = 180 Arch angle

J = 41.62 cm4 Second moment of section

A = 64.52 cm2 Cross section area

E = 0.1378N/cm2 Elastic modulus

ν = 0.5 Poisson ratio

The structure (Fig.64) is discretized with 50 Timoshenko elements according with [7, 14]. The

structure is solved with Arclength Riks method. The number of increments is 7500. Results are shown

in Fig.65. The structure performs different loops in the load-deflection plane. The responce is in

perfect accordance with [7] (Fig.67).
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Figure 64: Pinned round arch: geometry, discretization, restraints and loading conditions
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Figure 65: Pinned round arch: resulting charts
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Figure 66: Pinned round arch: animation frames for different increments
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Figure 67: Pinned round arch: literature results from [7]

6.8 Elastic circle

The nonlinear analysis on the response of a vertically loaded elastic circle is shown. The structure is

restrained at the bottom node with an encastre. At the top node a vertical point load is applied. In

addition a small moment is applied in the same node in order to derive the response of the bifurcated

load path. the properties are set as follows:

Properties

R = 10 cm Radius

A = 0.1 cm2 Cross-sectional area

J = 0.1 cm4 Second moment of section

E = 1000N/cm2 Elastic modulus

ν = 0.3 Poisson ratio

The Riks arclength method is used. The arclength parameter ∆s is set to 1.The circular structure

is discretized into 100 Timoshenko elements.
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6.8.1 Bifurcated path
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Figure 68: Circular structure main load path: geometry, discretization, restraints and loading condi-

tions
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Figure 69: Circular structure main load path: resulting charts
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Figure 70: Circular structure main load path: animation frames for different increments

6.8.2 Main path

In order to follow the main path the small tip moment is removed. Just the vertical load is applied to

the top structure node. The load-vertical displacement response is almost linear. A sharp decrease of

the determinant value occurs in the region where the bifurcated path joints the main path.

6.8.3 Bifurcated path
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Figure 71: Circular structure bifurcated path: geometry, discretization, restraints and loading condi-

tions
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Figure 72: Circular structure bifurcated path: resulting charts
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Figure 73: Circular structure bifurcated path: animation frames for different increments

6.9 Cellular material sample

The mechanical behaviour of a cellular material structure is tested. The shape is inspired by the

TAVR valves in biomedical applications. The structure consists in a 6× 5 rows per columns matrix of

cells. The arranged cells have sinusoidal shaped walls and each cell consists in 6µm×2µm dimensions.

Cellular walls are modelled with Timoshenko beam type elements. The structure is clamped ad one

side and increasing forces are applied at the other side end-nodes. Both solicitations of tensile loading

and compression will be tested. The following properties are used:

Properties

A = 0.1 µm2 Cross sectional area

J = 0.1 µm4 Second moment of section

E = 1000N/µm2 Elastic modulus

ν = 0.5 Poisson ratio

The structure is discretized with 432 nodes and 540 Timoshenko elements. A Riks arclength method

is used with ∆s and a total number of increments of 100 is used.

6.9.1 Tensile loading

Tensile forces are applied at end nodes. The structure is shown in Fig.74. Resulting charts can be

appreciated in Fig.75. The animation frames for different time increments are illustrated in Fig.76.

The structure has an hardening behaviour as the fibers align to the load axis.
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Figure 74: Cellular material sample structure: geometry, discretization, restraints and loading condi-

tions
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Figure 75: Cellular material sample structure: resulting charts
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Increment= 0
Increment= 100

Figure 76: Cellular material sample structure: animation frames

6.9.2 Compression loading: main path

Compression forces are applied at end nodes. The structure is shown in Fig.77. An additional con-

straint is added on the vertical displacement of end nodes in order to prevent local instabilities in

the areas of force introduction. A more correct approach in order to apply the force on one side of

the sample would involve a definition of a tie constraint (rigid body constraint) on all the end nodes.

Resulting charts can be appreciated in Fig.78. The animation frames for different time increments are

illustrated in Fig.79. The structure has an hardening behaviour. A significant reduction of the tangent

stiffness matrix determinant occur at a certain spot. The reduction occurs due to a bifurcation of the

load path. As shown by the main load path determinant, the buckling mode is expected for a value of

about λ = 22 of the load multiplier.
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Figure 77: Cellular material sample structure: geometry, discretization, restraints and loading condi-

tions
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Figure 78: Cellular material sample structure: resulting charts
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Figure 79: Cellular material sample structure: animation frames

6.9.3 Compression loading: buckling mode

A small non-simmetry is introduced here in the forces values to trig the buckling mode. As shown by

the main load path determinant, the second buckling mode is expected for a value of about λ = 22 of

the load multiplier. Compression forces are applied at end nodes. The structure is shown in Fig.80.

Resulting charts can be appreciated in Fig.81. The animation frames for different time increments are

illustrated in Fig.82. The structure has an hardening behaviour. A significant reduction of the tangent

stiffness matrix determinant occur at a certain spot.

Figure 80: Cellular material sample structure: geometry, discretization, restraints and loading condi-

tions
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Figure 81: Cellular material sample structure: resulting charts
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Figure 82: Cellular material sample structure: animation frames

7 Conclusions

A structural analysis software for planar structure analysis in large deflection has been successfully

developed in this work. Results have been proven to be in agreement with other literature works.

Multiple case studies of engineering interest have been analysed showing both the deformation evolution

and the load-displacement path.

Further future implementation and improvement of the code might be:

• further control methods developement (spherical, hyperspherical, hyperelliptical, local hyperel-

liptical controls);

• other elements formulations;

• implementing buckling analysis (eigen problem resolution);

• program enhancement of tools (example: importing structure geometry and data from excel or

an improving in exporting the outputs);

• ...
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A Appendix: Code lines and program structure

As complementary content, the Python code constituting the program is here shown and commented.

An overview of the code structure is given and the raw code lines are introduced and briefly de-

scribed. In the code the analytical defined quantities are recognisable. The code tries to be as much

self-explanatory as possible exploiting the Python coding style. The important functions for computa-

tional mechanics purposes are illustrated and explained. Auxiliary functions (such as result plotting,

animation plotting, reset, user input, interface building functions) are omitted.

A.1 Python language brief introduction

Python is an interpreted, object-oriented, high level programming language. A python code can be

written exploiting integrated development environments (IDEs) such as PyDev, PyCharm, Visual

Studio Code (...). For this work PyCharm was exploited but other environments are valid choices

as well. Python presents valid alternatives to other computational, analytical and engineering tools

such as Matlab or Mathematica. An important feature of python language is the availability of

already implemented libraries that can be found. The libraries constitute extensions to the raw python

languaf̀ıge capabilities. Important libraries that have been exploited in this work are the numpy library

that enables to perform linear algebra calculations, the matplotlib library that consent to plot graphics

such as charts, the kivy library that allowst to structure the user interface.

The python code is structured in Class objects: a Class is an object constructor (a ”blueprint”

for constructing structured objects). A Class contains properties and methods. The properties are

variables that are associated with the defined object. Methods are basically functions which are strictly

related to the class. Other important tools in a python code are functions.

A.2 Joint class

A joint object is constructed according to the Joint class (Fig.83). The joint class contains general

attributes like the number of joints defined, the dof number of the Joint class, the dofs labels. a Joint

object has a name, an x1 coordinate a x2 coordinate and a ”Restraint” and a ”JointLoad” object.

These last two are constructed according to different classes described in Fig.85. The Joint class has

different methods. Most important methods are shown in Fig.84. The ”nodal load vector” method

returns a 3-vector containing the nodal force components. The connectivity matrix is 3 × N matrix

that allows to shifting to the structural dofs, that has N total dofs, to the joint object dofs, that has

3 dofs, with a simple matrix multiplication operation. The vice-versa operation is of course possible

by transposing this matrix.
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Figure 83: Joint class definition and object initialization procedure

Figure 84: Joint class: nodal load vector and connectivity matrix methods

Figure 85: Other classes: the ”JointLoad” class and the ”Restraint” class
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A.3 TrussElement class

The ”TrussElement” class (Fig.86) provides the construction of the Truss element type object. The

definition needs a name, two ”Joint” objects, a cross section area in the reference configuration and

the Young’s modulus.

Figure 86: ”TrussElement” class definition and initialization procedure

In Fig.87 the connectivity matrix and the rotation matrix are provided.

Figure 87: Truss element class: connectivity matrix and rotation matrix (reference configuration)

methods

The green lagrange strain measure e, the conjugate PK stress t, the matrix M , the vector B0 and

the vector B according to what defined in the analytical description are shown in Fig.88.
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Figure 88: Truss eleemnt class: methods returning the green lagrange strain measure, the Piola-

Kirchhoff stress, and the analytically defined vectors and matrices M , B, B0

The element tangent stiffness matrix and the internal forces vector are finally computed as in

Fig.89.

Figure 89: Truss element class: internal forces vector and tangent stiffness matrix methods

A.4 TimoshenkoBeam class

The ”TimoshenkoBeam” class (Fig.90) allows to define Timoshenko Beam type elements. The ”Tim-

oshenkoBeam” is a 6-dofs finite element. The object is defined providing a name, two ”Joint” type
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objects, two restraint type objects, the vearious material modulus, sectional area and inertia second

moment of the section.

Figure 90: ”TimoshenkoBeam” class definition and initialization procedure

First important methods of the ”TimoshenkoBeam” class are the rotation matrix and the connec-

tivity matrix (Fig.91).

Figure 91: Timoshenko beam element connectivity and rotation matrices methods

The current and reference configuration length and angles can be derived with the functions of

Fig.92.
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Figure 92: Timoshenko beam element current and reference configuration useful methods

The useful defined vectors also defined in the analytical description of the formulation are defined

according to the methods of Fig.93.

Figure 93: Timoshenko beam element: methods returning the analytically defined vectors
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The ”internal nodal forces”, ”material stiffness matrix”, ”geometric stiffness matrix”, total tangent

”non linear stiffness matrix”, are derived according to the methods shown in Fig.94 and Fig.95.
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Figure 94: Timoshenko element: internal forces vector, material stiffness matrix, geometric stiffness

matrix and tangent stiffness matrix methods
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Figure 95: Timoshenko element: total tangent stiffness matrix method definition

A.5 Structure class

The ”Structure” class (Fig.96) is a Python class object that has a list of ”TimoshenkoElement” or

”TrussElement” objects and a list of ”Joint” objects. Moreover the ”Structure” class contains a

”displacement” vector in that the current configuration displacement components of the structure are

collected. Another important variable associated with the Structure Class is the ”.dofs” and ”.active

dofs” variable that contain the list of the structural dofs and the active dofs.

Figure 96: Structure class definition and object initialization procedure

When running a generic analysis (elastic or nonlinear) the first thing is done is an initialization

process. Having a list of joints and elements object the ”assign dofs” (Fig.97) method initializes the

structure by assigning the degree of freedoms.
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Figure 97: Structure class: DOFs assignment method

The ”reduction matrix” method (Fig. 98) of the ”Structure” class allows to compute a matrix

composed of zeros and ones components that consent to get the reduced vector and matrices when
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multiplied by the correspondent global vector and matrices.

Figure 98: Structure class: reduction matrix method

The external forces vector in global and reduced formats can be computed with the functions of

Fig.99.

Figure 99: Structure class: reduced and global external forces vectors methods

The internal forces vector in global and reduced formats can be computed with the functions of

Fig.100.

Figure 100: Structure class: reduced and global internal forces vectors methods

The reduced and global tangent stiffness matrices can be computed according with the code lines

of Fig.101.
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Figure 101: Structure class: reduced and global tangent stiffness matrix methods

The solver method (Fig.102, Fig.103, Fig.104, Fig.105) is a function strictly associated with the

Structure class that allows to perform the incremental nonlinear analysis. The number of increments,

the maximum iterations number for the correction step and the residual tolerance are set.

The strcuture can be solved by different solver methods. First by exploiying an internal python

solver exploited from the ”scipy” library that contains various rootfinding methods. In the shown case

a Sequential Least Squares Programming (SLSQP) is for example exploited in order to minimize the

residual. As second option the ”my nr” case provides an incremental predictor-corrector method that

can rely on different control strategies such as the load control, displacement control and arclength

control method. As last option the ”my nr arclength” option provides a Riks arclength method

implemented according to [5].
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Figure 102: Structure class: solver method - part 1
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Figure 103: Structure class: solver method - part 2
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Figure 104: Structure class: solver method - part 3
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Figure 105: Structure class: solver method - part 4

A.6 Running analysis and user interface

The user interface is built with the python library ”Kivy”. The user interface allows the user to

insert joints and elements and to perform the analysis. While defining the joints and elements in the

background the running program defines a ”Structure” object and collects the ”TimoshencoBeam” or

”TrussElement” objects and the ”Joint” objects in the ”Structure” object correspondent lists. The

function that runs the analysis is shown in Fig.106.
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Figure 106: Analysis running procedure

A capture of the user interface is shown in Fig.107.

Figure 107: User interface
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