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1 Introduction

In the present work a structural analysis program is developed, tested and results are illustrated on
multiple case studies. The program is coded in Python and is capable of performing nonlinear analyses
on two-dimensional planar structures involving geometric nonlinearities. The load-displacement struc-
tural response can be derived with the program under concentrated load solicitation and the nonlinear
equilibrium path can be derived. The implementation of geometrically nonlinear truss element and
Timoshenko beam-like two-node elements are presented. The formulations are analytically derived in
a Total-Lagrangian formulation approach (TL). Furthermore a Newton-Rhapson resolution method
is implemented in order to solve numerically the nonlinear equilibrium equations. The routine con-
sists in a predictor-correction procedure. In order to correctly follow the load-displacement nonlinear
paths, different methods have been developed. Both the load and displacement control methods are
implemented. These fail following the equilibrium path in particular circumstances and can therefore
present drawbacks. Therefore a Riks arclength path following method has been also developed. This
method is particularly adapt to capture both snap through phenomena and snap-back behaviours in
the structural response.

The developed routine is firstly tested by comparison of the load-displacements curve with the
correspondents derived from literature benchmark problems or analytically derived solutions. Following
the validation a variety of case studies are presented and discussed.

A deeper look into the coding structure and functioning is given in Annex A. Here the coding lines
are shown and the analytically defined vectors, matrices and procedures are recognisable in the coding
python language.

The main achievements and scopes of the present study will be:

e To successfully implement a programming code capable of solving planar structural geometric

nonlinear problem involving frame and trusses;

e learn to code in Python, in particular, aside from the computational mechanics aspects, the
program interface (Fig.1), user input window, internal structure and output tools have been a

crucial part of the work as well;

e to better understand geometric nonlinear phenomena such as hardening and softening behaviours,

snap-through and snap back occurence on multiple case studies;
e to better understand the widely exploited Newton Rhapson algorithm as root finder process;

e to understand how control strategies such as the load control, displacement control and arclength

control methods work.
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Figure 1: user interface of the developed python FEM program

2 General considerations

2.1 Geometric non-linearity

Sources of nonlinearities in mechanical behaviours can derive from:
e material law nonlinearity;
e geometric nonlinearity;
e contact problems (boundary conditions nonlinearity);
e load condition nonlinearity.

How various types of nonlinearities act in a mechanical problem is well depicted in the ” Tonti diagram”

(Fig. 2 and Fig.3).
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Figure 3: relevant relationships in mechanical problems: nonlinearity sources

The present work is focused on the study of the geometric nonlinearity and the main scope is
to analyse this phenomena on different case studies with the implemented program. Other types of
nonlinearities coming from material laws, boundary conditions or originated from load conditions are

not considered. Practical application purposes in which taking into account for geometric nonlinearity

is crucial are multiple. Some examples are here listed:

e TAVR (Transcatheter Aortic Valve Replacement) valves in biomedical applications (Fig.?? from

[10]).

e snap through behaviours of low curvature shells and arches.

e second order and postbuckling response in structural civil engineering frames. Taking into ac-

count second order effects is recommended by the international standard design codes like Eu-

rocodes.



e airspace engineering: many commercial aircraft are designed so that fuselage skins can elastically

buckle (Fig. 5, and Fig.6 from [4]) below limit load and continue to operate safely and efficiently

e the postbuckling favourable contribute shear buckling of steel beam webs (Fig.7 from [?]) is in

bridge engineering checks taken into account according to Eurocode 3 part 1-5 [1].

Figure 4: TAVR valve functioning [10]

Figure 5: buckling of fuselage in airspace engineering



Figure 6: buckling of fuselage: finite element analysis (FEA) from [4]

Figure 7: shear buckling of steel beam web from

2.2 Equilibrium path

In the present work no account is taken for the dynamical effects. The forces are assumed to be con-
servative. The load is assumed to be slowly applied in order that the successive equilibrium conditions
which are derived reflect a static configuration under a prescribed load condition of the structure. The
successive set of points are referred as ”equilibrim path”. Points belonging to the equilibrium path do
satisfy the relation:

fint = feat Equilibrium condition (1)

This must be satisfied for every part of the structure. The condition may be expressed also as the
stationarity of the Total Potential Energy. the equilibrium condition is therefore strictly related with
the Potential Energy, which is a scalar quantity, and is satisfied when the gradient of the potential
energy function is a zero vector.

g—g =0 Equilibrium condition (2)
In a FEM discretized approach f;,, and f.,, are two vectors, which components represent the nodal
internal and external forces respectively. In the (u,A) space, the set of points satisfying the equi-
librium equation belong to the equilibrium path. The equilibrium path can be interpreted as the

load-displacement relation of the structure and reflects the structural response under static conditions.



In nonlinear problem the equilibrium condition is no more derivable via an effects linear addition.
Moreover the Kirchhoff uniqueness theorem is no more valid and more than one equilibrium configura-
tions can exist under the same load. When a nonlinear problem is considered, the structural response
and the associated load-deformation behaviour can exhibit critical points, softening behaviours, turning
points and bifurcation phenomena. Moreover snap through or snap back can occur.

In general large deformation problems the notion of current configuration and reference config-
urations are introduced (Fig.8). In this work a Total Lagrangian description of the motion will be

adopted. Thus the reference configuration will always be the the undeformed one.

/\/\/\/\/\/\ Reference configuration (s
as base in TL description)
Motion

rent configuration

Figure 8: reference and current configuration

2.3 Discretization and FEM approach

In a FEM approach the structure is discretized. Thus, the infinite degrees of freedom describing the
continua structure are reduced to a relevant finite number of degrees of freedom. In order to describe
the displacement and strain field in the intermediate parts of the body, interpolating shape functions
are introduced and the displacement field is expressed as function of the finite number of degrees
of freedom. These relevant displacements, collected in the w vector, constitute the finite number of
degrees of freedom of the discretized FEM structure. Moreover the generic structure is in a FEM
approach reduced into elements, the elements contribution in terms of internal forces and stiffness are
assembled in a global internal force vector and a global stiffness matrix of the structure.

In order to obtain the single elements contributions to the global internal force vector and tangential
stiffness matrix, the element’s formulation has to be developed. The first step in the subsequent
passages will then be the elements formulation. In this work two geometrically nonlinear elements are
developed. The first is a truss type element and the second is a beam type element. Both will be

described in a Total Lagrangian approach.

2.4 Numerical solution

When having a global tangent stiffness matrix of the structure and the internal forces vector both de-
pendent on the current configuration state, a step-by-step procedure of the equilibrium path derivation
should be carried out. In order to do that, a step incrementation strategy should be implemented. Dif-
ferent control methods exist. In this work a load control, a displacement control and a Riks arclength

control strategy will be implemented.



As last problem, in the resolving procedure, if a non purely incremental analysis is carried out,
correction steps have to be performed in finding the solution to the nonlinear equilibrium equation
after a first predictor step. In order to do that a Newton-Rhapson method is in the present work

described and implemented in the program.

3 Elements formulations

3.1 Truss element in Total Lagrangian description

A Total Lagrangian formulation of a geometrically nonlinear truss element is here described. Reference

is made to [2, 3].
3.1.1 Displacements field description
In the reference configuration:
Ao Cross sectional area in reference configuration (3)

Ly Element length in reference configuration (4)

In the current configuration:
A Cross sectional area in current configuration (5)

L Element length in current configuration (6)

The element’s degree of freedoms are collected in the displacement vector w. The nodal forces are

collected in the vector f.

Ux1 1 — Xy Ix1
Uyl n— Y 1
Ux2 T2 — Xo fxo
Uy Y2 — Ys fra

The displacement field between the nodes is obtained with linear interpolation functions:

M) = 501-8) (®)
No(e) = 3 (148) 9)

The generic point has coordinates X in the reference configuration:

X(6) = X(¢) _ Ni(§)X1 + N2 ()Xo 10)
Y (€) Ni(§Y1 + Nao(§)Yo

2(€) = z(€) _ Ni(§)x1 + Na(&)zo )
y(§) Ni(§)yr + Na(§)ye



Here £ is the isoparametric master element coordinate in the range [—1, 1]. The displacement field

is expressed as:

w(e) = 2(6) - X(6) = | O = [ M(Oux1+ Na(Qux
uy (§) Ni(§uy1 + No(§)uyo
uxi
w(e) = N(&) 0 M) 0 ) fuxe N
0 M 0 M uyt
Uy2

The element’s lengths in current and reference configurations can be computed as:

L? = (Xo1 + ux21)? + (Yor + uy21)” Li = X3 + Y5

3.1.2 Strain-displacements relation

The Green-Lagrange strain is:

L2—L3 1 ( " ) + ( 2 42 )
e=————= —(coxux21 + Coyuy21 572\ u
T i
Here:
Xo1
Cox = - =08 Yo
0
Yo, .
coy = I sin ¥
0
T21
c = —— = COS
x=T ¥
Cox = yﬂ = Sin’(/}

The GL strain can be expressed in a matricial form:

1
e:Bou+§uTMu=eL+eN

(12)

(13)

(20)

Here ey is a nonlinear contribute and ey, is a linear contribute. Following matrices have been defined:

1

By = T {—cox, —coy,cox, coy }
0

M= i 0 1 0 -1
L§j-1 0 1 0
0 -1 0 1
B = S [—cm ¢, ¢» cy| =Bot+u'M
Lo y y

(21)

(22)



3.1.3 Total potential energy

In the current configuration the total potential energy IT is:

O=U-W = tge+%E62dVOffTu:/

1 _
Ao(toe + = Fe?) dX — fTu (24)
Vg LO 2

In this last relation the integrand is constant. Therefore:

I=U-W-= AoLO <t06 + ;E€2> — fT'u (25)

3.1.4 Internal forces vector

The residual forces vector is:

o1l Oe
_ = Vit— — 2
"= o0~ Wiy T (26)
The internal forces vector here consists in:
ouU Je
, = — = Vot— 2
-fznt,e p) VO ou ( 7)
Where:
ge _gr (28)
ou

The code implementation can be appreciated in Appendix.A.

3.1.5 Tangent stiffness matrix

The tangent stiffness matrix is computed taking the first variation of the internal forces vector:

or O0f; 0 Oe
Here:
c? cs —c2 —cs
2 2
K, = Dlojes oo (30)
Lo -2 —cs 2 cSs
—cs —s® c¢s 52

Kg=— (31)

The tangent stiffness matrix code implementation can be appreciated in Appendix.A.

3.2 Beam Timoshenko element in Total-Lagrangian description

A geometrically nonlinear beam element is formulated in this section. Reference is done to [5]. This is
done under the assumption of small strains that implies linear-elastic behaviour of the material. The
assumptions of straight element and prismatic beam are considered. The cross-section is therefore
uniform along the longitudinal axis of the element. The element has two nodes and is described in a

Total Lagrangian (TL) kinematics.



3.2.1 Introduction

In order to introduce the TL description, a current and a reference configuration have to be introduced.
In the reference configuration the X and Y coordinates are introduced. The element has two nodes.
The cross-section rotation from reference to current configuration is called 6.

In Euler-Bernoulli Beam model (Fig.9) no strain energy due to shear stresses is taken into account.
While the longitudinal axis of the element will deform, sections will remain plane and normal to the
longitudinal axis. Here v = 6 — ¢ = 0 (Fig.10) holds.

In the Timoshenko model (Fig.9) shear deformation effects are included. The cross section remains
plane but it does not remain orthogonal to the deformed longitudinal axis. The transverse shear stress
is assumed to be constant over the cross section. The shear distortion can be computed as v =60 — ¢

(Fig.10).

(a) C'(BE) model 0,

’91/
vy \é Uy,
u
Xx 11
Uy Uyy Uxi Uy
R==C S SRR R . e O

Figure 9: Comparison of Euler-Bernoulli and Timoshenko beam models

Angles are positive 0o— 1 normal to reference

as shown. Note zx— beam axis X'
that y=0-—
where:s v; =—y :\liv -0 « V] normal to deformed
| —"beam axis

direction of
deformed_—V*

cross section

Figure 10: Sectional rotation in relation with element longitudinal axis

Despite of the fact that in Timoshenko models the inclusion of the shear deformation appears to
complicate the formulation, this kind of element is simpler to be constructed. This is because 6(X) can
be described indipendently from the u(X) and v(X) fields. Thus a linear variation can be assumed to

map both the rotational field and the displacement field. The linear transverse variation matches the

10



commonly assumed for the axial deformation like in the previous done description of the truss element.
The transverse and axial displacements are called consistent. In the Euler-Bernoulli element a cubic
interpolation of the displacement field needs to be exploited. This element is often called Hermitian
because from the cubic shape functions used. While in the Euler-Bernoulli formulation at least C!
functions are needed, in Timoshenko the requirement drops to C° functions. The internal kinematics
of the Timoshenko model is therefore simpler.

An important aspect that needs to be taken into account in the Timoshenko formulation is the
shear locking. This occurs because of the high shear strain energy that would result in an exact
integration with the actual shear properties in order to match the element actual deformation with
the assumed linear field of displacements. To avoid locking some corrections are needed. A selective
integration is done for the shear energy and a residual energy balancing is taken into account. Most
of the shear energy is therefore removed. In this model the modeling of the actual shear deformation
is not the main focus. The actual scope is to capture the correct beam behaviour. Authors underline
that it would be more appropriate to denote the element as ”C%element” rather than ” Timoshenko
element”.

A geometrically nonlinear Timoshenko beam is formulated. In order to formulate the element a
strain measure needs to be exploited by mean of displacement gradients. Work-conjugate stresses
respect to the strain measures are introduced. The final objective is to derive the expression of the
tangent stiffness matrix and internal forces vector as function of the nodal degrees of freedom of the
elements.

The following passages that will be carried out are summarized in the flowchart (Fig.11).

11



’ Node Displacements u ‘

Egs (10'.5), (10.8)
Y

’ Element displacement field w = [u, , u,, 0]"

Eq. (10.9)
) 4

’ Displacement gradients w'= [uy, , uy , 0]

[
Eq. (10.15)
h 4

Generalized strains h=[ e, 7y, 1« ]"

T
Eq.(*10.29) ’W
[
St ltants z=[ N,V, M]" V 7
’ e s 2= ! vary U: 8U=j1:0 ZB dXdu=g &
Eq. (1034)]

’ Internal forces p ‘

vary p: SpZJL.o (B"8z + 8B z) dX du = (K, + K;)

Eq. (10.40)l

’ Tangent stiffness matrix K= Ky, +K; ‘

Figure 11: Derivation of tangent stiffness matrix and internal nodal forces vector: general scheme

3.2.2 Displacements field description

Each node (i) has three degrees of freedom which are two translational DOFs (u; and v;) and one
rotational DOF ;. In order to obtain the element formulation, the reference configuration is considered
aligned with the X axis with origin at node 1. The element has length L and cross sectional area Ag
and second moment I;. These are defined as:

Ay = / dA Iy= | YZ?dA. (32)
Ao Ao

12



Section rotation is I / 62\ Y
(@) O=y+y=y—y
- P(xy)
\ s

- g X
= vyh 1 A
Y=, YA = T
Y % et oib
X=Xp=Xep A% ] _ T X ux(X) =ty
P(XY) 24 :
0(_ NN Uxc ! G X x
Y =K’0—ﬁ.:;:? # _____ > X x C—ILO ------------ '---’*
17 G(X0) 2 1 o 2

Figure 12: Displacements mapping

In the current configuration the area is A, the second moment is I and the element’s length is L.
The six degrees of freedom of the element are collected in a single vector w:

u = {ulav17017u271}2792}T (33)

The nodal force vector components are collected in the vector f:

F={fx1, fy1, for, fxa: fya, foo} " (34)
The internal motion is described by:
x xe — Y (sint) + sin~y cos ) xe —Y(sinf + (1 — cosy)sin) (35)
Yy yo + Y (costp — sinysin ) yo + Y (cosO + (1 — cosy) cos )
with:
0=~+1 r=X+u Y= (36)
The motion description can be expanded into Taylor series in v up to O(y%).
x u+ X +1/2Y3cos — Y (1+1/2-~% +7/24~4*)sin (37)
y v+ Y(14+1/292 —7/247%) cos§ + 1/2Y v3sin §
Under the assumption of small shear strains 8 — 0:
T X 4+u—Ysinb
= (38)
Y v+ Y cosf

Note that u(X) and y(X) are functions of X only. An internal extended displacement vector w can
be defined as:
_dw du dv df

w = {u(X),v(X),G(X)}T w' = ﬁ = {ﬁ’ ﬁv E}T = {ulvvlrel}T

(39)

An arclength coordinate s can be introduced in the current configuration. With this coordinate the

following useful relations hold:

= = AT WP (40)

1+u =s"cos "=¢'si ==
+u =s P v = ¢ sing § =%

13



If ', v’ are constant over X:

s’ =L/Lg 1+ = Lcosy/Lg v' = Lsin/Lg

(41)

A linear interpolation of the generalized displacements is used in order to describe the displacement

field. Here £ = 2X/Ly is the isoparametric coordinate ranging form —1 to 1:

Uy
U1
u(X) 1-¢ 0 0 1+¢ 0 0 )
1
w=|yX)|=1/2- 0 1-¢ 0 0 14¢ 0 = Nu
U2
0(X) 0 0 1-¢ 0 0 14+¢
V2
02
The displacement gradient interpolation can be expressed as:
U1
U1
u'(X) -1 0 0 1 0 O )
wlvx) =1Ll o 1 0 01 o] |=Nu
U
0'(X) 0 0 -1 0 01
V2
62

3.2.3 Strain-displacements relation

(43)

The strain-displacement relation has to be introduced. In order to do that the deformation gradient

matrix is introduced:

ox ox I :
F: X Yy _ 1+U 7YXCOS€ 7Sln0
g—;"( g—;‘i v —Yyxsinf cos 6

Here x = 6’ is the curvature. The displacement matrix is:
G=F-1
the Green-Lagrange (GL) strain tensor is computed as:

e e
e= " ) =12F"F - 1) =1/2(G + GT)
€y x €yy

The non-zero axial and shear strains are collected in the strain vector:

el exx (I1+u)cosf+v'sinf —Y0 —1 e—Yx
e — = = =
e 2exy —(1+u)sin@ +v' cosf 5
Therefore, the strain quantities are:

e=(1+u")cos + v sinh — 1 v=—(1+u)sinf + v cosf x=0
These are arranged in the vector h:
h={e,7,x}"

14
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3.2.4 Arbitrarily oriented reference configuration

In the general case the reference configuration (Fig.13) is not aligned with the X axis. Considering an

angle ¢ of rotation:

cos ¢ = Xo1/Lg sin¢ = Y51 /Lo (50)
Yo=Y -Y; L§ = X3 + Y5
1, 1)
Figure 13: Arbitrarily oriented reference configuration
The angle ® = v + ¢ is derived by:
cos® = costp+ ¢ = a1 /L sin® =siny + ¢ = ya1/L (51)
With:
To1 = Xo1 +u2 —ug Yo1 = Yo1 + v — v (52)
The length L in the current configuration is obtained by:
L* = a3 + 3 (53)

3.2.5 Constitutive equations

The material is assumed to be elastic, homogeneous and isotropic. The only non-zero Piola-Kirchhoff
stresses are the sxx and sxy components. The stress vector s is related to the GL strains with the
following relation:
o SxX _ S1 _ s?—l—Eel _ S1 N E 0 el . Be (54)
Sxy 59 s9+G.2 59 0 @G €
In the current configuration the axial force N, the transverse shear force V' and the bending moment
M can be expressed as:

N = N° + Edge V=V 1+ GAgy M = M° + Elyx (55)

The stress resultant vector z is:

z={N,v,M}T (56)

15



3.2.6 Strain energy

Due to the fact that the separability of the residual equation holds, the strain internal energy is:
U= / (s9)Te+1/2¢" EedV (57)
Vo
By computing the area integrals this gets:

U= / N +1/2EApe? dX + / VO +1/2GAy* dX + | M°x +1/2EIyx* dX (58)
L() LO

Lo
3.2.7 Internal force vector

The internal force vector is derived by considering the first variation of the internal energy U.

oU = pTou = / (Noe +Voy+Méx)dX = | 2T6hdX = [ 2"BdX U (59)
Lo Lo Lo

This expression can be computed by a one point Gauss integration with sample point at £ = 0. In the
next passages the subscript m stands for "midpoint” of the beam element. The following quantities

are defined:
O = (01 +62)/2 Wy =0y + @ Crn, = COS Wy Sm = SiN Wy, (60)

em =L cos (0, —)/Lo — 1 Ym = Lsiny — 0,/ Ly (61)

The matrix B is computed as:

) —Cm  —Sm _1/2L07m Cm  Sm _1/2L0F)/m
B, =B({=0)= g | sm —em 1/2Lo(1 +em) Sm  —cm 1/2Lo(1+epn) (62)
0 0 -1 0 0 1

The following expression is valid in order to compute the internal forces vector:

T
—Cm  —Sm —1/2Loym Cm Sm —1/2Loym N
p=LoBlLz=| s, —cm 1/2Lo(1+em) Sm —cm 1/2Lo(1+em) 1% (63)
0 0 -1 0 0 1 M
3.2.8 Tangent stiffness matrix
The first variation of the internal force p defines the tangent stiffness matrix:
op= | BT6z2+6BT2dX = (K + Kg)ou = Kéu (64)

Lo
Here Kj; and K are respectively the material and the geometric stiffness matrix. The material

stiffness matrix is derived by considering the variation of the stress while keeping constant the term

B. Thus:

SN Edy 0 0 Se
sz=|sv|=]| 0 G4 0 5 | = Son (65)
SM 0 0 EI/] \sx
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By substituting the expressions of h = Béu and the term BT §z:

Ky=| B'SBdX =K + K} + K3,

Lo

(66)

Again the integral is computed by exploiting a one Gauss integration point at £ = 0. Here a; = 1+¢€,,:

2 CmSm —CmYmLo/2 —c2, —CmSm —CmYmLo/2
CmSm, 52, —YmLoSm /2 —CmSm, —s2, —YmLoSm /2
o _ BAy | —emYmLo/2 —YmLosm/2  vnL3/4  cmYmLo/2 AmLosm/2 L3[4
MLy —c2, —CmSm emYmLo/2 2 CmSm cmYmLo/2
—CmSm —s2 Y LoSm /2 CmSm 52, Y LoSm /2
—CmY¥mLo/2 —AmLosm/2  VML3/4  cmymLo/2  vmLE/4
(67)
00 O 00 O
00 O 0 0 O
K?\/[:ETIO 00 1 00 -1 (68)
o]J]0 0 0 0 0 O
00 0 00 O
00 -1 0 0 1
52 —CmSm  —a1Losm/2 —s2, CmSm. —a1LoSm /2
—CmSm 2 ema1Lo/2 CmSm —c2, ema1Lo/2
31:% —a1Losm /2 cmailo/2 atL3/4 a1Losm/2 —cmailo/2 atL3/4 (69)
Lo —s2 CmSm a1Losm /2 52 —CmSm arLosm /2
CmSm —c2, —cma1Lo/2 —CmSm 2 —cmaiLo/2
—a1Losm/2 cemailo/2 atL3/4 a1Losm/2 —cmaiLo/2 atl3/4

The geometric stiffness matrix K derives from the variation of B with fixed stress vector z. In

the next expression the index summation from Einstein is exploited:

KGij&Lj

Lo

SBTzdX =

0 By;

Lo 8Uj

oujzy dX :/
Lo

Al 2k dX Su;

(70)

In the next relation V,,, and IV,, are the values of V and N computed in £ = 0. The geometric stiffness

matrix can be computed as K¢ = Kgn + Ky, where these are defined as follows:

Kgn

S 0 0
—Cm 0 0
—1/2Lo(1 4+ em) —Sm Cm
—Sm 0 0
Cm 0 0
—1/2Lo(1+em) —Sm Cm
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Sm
—Cm

—1/2L(](1 + €m)

Sm

Cm

71/2L0(1 -+ €m)

(71)



0 0 Cm 0 0 Cm

0 0 —Sm 0 0 —Sm
Vm Cm Sm _1/2L07m —Cm —Sm _1/2L07m

0 0 —Cm 0 0 —Cm

0 0 —S8m 0 0 —Sm

Cm Sm 71/2L07m —Cm —Sm 71/2L07m
4 Solution method

In general the analytical solution to the problem of deriving the load-displacement curve is represented
by a system of nonlinear partial differential equations.

Once the system is discretized the obtained system of N equations can be written as:
r(u,A)=0 (73)
Or equivalently:
ri(ur, ue, un, A, Ao, oo Apg) =0 for i1=1,...N (74)

Here w is the state vector, which is the displacements vector containing as components all the general-
ized coordinates u; for j = 1,..., N of the studied structure, A is the vector containing as components
the control parameters Ay for £ = 1,...,m. In the present study, just one control parameter is consid-
ered and the control parameters vector A contains just one component, namely A. A further hypotheses

here introduced is that the external nodal forces vector is proportional to the load parameter A:

fe:rt(A) =A- fref (75)

Under these circumstances the hypotheses of proportionality holds. Note that in this case also the

external work will be proportional to the load parameter:
W (u, A) o< A (76)

In this case the incremental load vector is constant and equal to the reference vector f

/ _ afext(/\) _
fe:z:t - T - -f’ref

(77)

Another hypotheses valid for the present study purposes is that the external forces nodal vector
feur does not depend on the generalized coordinates. It does not in fact depend on the state vector

u. Thus, the vector is just dependent on the control parameter A:

In this case the hypothesis of separable equations stands, thus the residuals are separable. The equa-

tions system can be written as:
.fznt(u) = .femt()‘) - T’(U, )‘) = fznt(u) - femt(A) (79)
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This hypotheses would not hold for example in case of follower load. In this case the external load
forces vector would depend also on the state of the system u.
Differently, under separable equations hypotheses, the tangent stiffness matrix K can be identified
as:
or %

Ktan(u) = aiu = ou (80)

In order to follow the load displacement curve, the general method is structured in order to see the
state vector u and the load parameter A as function of an evolution parameter t. This parameter is
referred as pseudotime parameter. Note that in the present study no dynamical problem is considered.
Thus the reference to time does not have to be confused to the real time flowing. In this hypotheses the
system evolution {u(t),A(t)} is a curve in the displacements-load space described by the pseudotime
parameter ¢t. Here is convenient to introduce a compact notation in order to identify the curve in the

displacements-load space:
o(t) = {u(t), A1)} (81)

The vector x(t) contains all the N + 1 unknowns of the system. If the derivative with respect to the
pseudotime ¢ is considered, a velocity vector can be derived at each point of the curve a(t) provided

that the curve is smooth (C1). The velocity vector is:
a(t) = {i, A} (82)

If the displacement vector w is interpreted as a function of the control parameter A, the composed

function can be derived as:

u(t) = u(A(t)) (83)

An important observation is that while the values u;(t) and A(¢) are all univocally defined for one value
of t and are functions, the values u;(A) can loose the function property as to one value of A more than
one values of u; can be related.

Taking into account the composition of these relations, the following can be written exploiting the

chain rule of derivatives:

. ou ou O\ .
W= =y g = A (8
. o\ o\ O\ .
“% "on o A (85)

In the previous relation the vector v is the incremental velocity vector and can also be written as:
v=u (86)

Here the prime indicates the derivative respect to the control parameter A\. Thus, the velocity vector

a(t) can be written as:

(t) = {i, A} = {v,1} - A (87)

Here we define:

t={v,1} (88)
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Note that if the curve is smooth the velocity vector @(t) exists and it is tangent to the curve x(t). Due
to the fact that A is a scalar, also the vector ¢ is tangent to the curve. A local tangent versor can be

derived via normalization of this vector:
E=1/f {v,1} (89)

Where f is the norm of the vector:

f=ViTvo (90)

If the first order incremental form of the residual equations is considered a relation linking the reference

external nodal force vector f,., and the incremental velocity v can be derived:

r=0 — fint = fert (91)
. : oA o\
K= )‘f'r'ef — Kwnu’ . E =1- Efref (92)
Thus the following equation holds:
Ktanul = fref (93)
By inverting this relation:
o = (Ktan)ilfref (94)

4.1 Newton-Rhapson method

Finding the solution to the system r(u, A) = 0 for the current increment in the current load step means
finding the particular state vector u and control parameter \ that satisfy the condition of balancement
for a given pseudotime value. In order to find the solution of a nonlinear system of equations many
methods can be found in literature. The various procedure can be distinguished on the order of the

algorithm:

e zero order methods do not need the numerical or analytical providing of the gradient (jacobian)

of the objective function.

e in first order methods the gradient of the objective function has to be provided. This can be done
by exploiting an analytical expression of the matrix or a numerical computation of it. Obviously

an explicit expression can favourably condition the computational efficiency.

e second order method, exploiting the Hessian of the functions. This takes into account also the

local curvatures.

The balance force equation r = f, . (u) — f...()\) is a system of N equations. The system at
the considered increment of the given step is described by the vector w and the control parameter
A. Therefore there are N + 1 unknowns to be determined. In order to close the equations system

an additional equation has to be enclosed, this is the constraint equation, describing how the load
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increment A\ should relate with the displacement increment Aw following the pseudotime evolution.

This relation is generally given by an equation of the following form:
c(Au, AN) =0 (95)

The constraints equations will be explicitly introduced in the subsequent sections. The adopted relation
is strictly linked with the control strategy exploited.
By collecting the equations r = 0 and ¢ = 0 in one single vector we define an extended residual

vector 7:

" (96)

=<2
I

c

In the present study a Newton-Rhapson method is implemented in order to find the root of the
nonlinear system at the given increment. The solution at the considered step for the increment j — 1
is known. The objective is to find the solution x; = {u;, A;} for the next increment j that satisfies
the balance equation. In order to do that an iterative process is used. The index k indicates in the
following passages the iteration number. In a particular iteration k£ of the process the state vector
u; and the value of A\, are known. The scope is to correct the point x;; = {u;x, Ajx} into
Zji+1 = {Uj k+1,Ajk+1} in order to get closer to the point that satisfy » = 0. At the current iteration

the residual condition is not in general satisfied:

Tj(@jk) = Fine(Wik) = Fear(Njxk) # 0 (97)

The residual function is expanded locally into Taylor series functions. If the first order is considered

the n — th component of the residual will be:
or or

r(u+du,)\+d/\)zr(u,)\)+%~du+a-d)\ (98)

In order to do that a gradient following (Fig.14) approach is used:

(8?’)1 r (99)
Zjk+1 =Tjk — | 5= Tjk
o ) ;i
More explicitly:
A it or\ ' or\ "t [Tk
AZj k1 = Tj 1 — Tk = ! = - (3) Tjk = — (8) ’ (100)
ANj k41 T/ gk T/ ik \ ik
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Figure 14: Newton-Rhapson solution update iteration scheme

This equation allows to compute the increments in the displacements and the load parameter .
Here the matrix multiplying the residual is the jacobian of the function #(x):

oF

= 5%

Jacobian (101)

The jacobian is a (N + 1) x (N + 1) matrix. The components are:

Oy
T Oz,

Jnm for nm=1,2,...,.N+1 (102)

As the function 7(x) and the variables x are divided in two blocks, so will be the jacobian. For the
indexes m,n = 1,.., N the & components are the displacements u and the residuals 7 are the balance-
ment equation components r. Therefore the jacobian components will coincide with the components

of the tangent stiffness matrix Ky,,, in fact:

Ory, - Ory, _ a(fint,n(u) - fewt,n(/\)) _ 8fint,n(u)

Oxm  Oum Oup, O

= Ktan,nm for nm=1,..,N (103)

Forn =1,...,N and m = N + 1 the r vector consists in the vector » and the N + 1 — th component

of the vector x is the control parameter A. Thus:

8’Fn _ % _ a(fintm(u) - fewt()\)) _ _8fewt,n()\) _ _a()‘ . fref,n))
Oxy, — ON o)) B on O\

= —frefn for n=1,...,N m=N+1
(104)
For n =N +1and m = 1,..., N the considerd component of the residual vector © coincides with
the constraint function c(u, ) and the considered components of x are those of the state vector w.
Therefore:
orn,  0c(u, \)

B i v foo- n=N+1 m=1,...N (105)

Qo

Here a vector of dimension N named a was defined. For n = N +1 and m = N + 1 the considered

component of the residual vector # coincides with the constraint function c¢(u, ) and the considered
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component of x is the control parameter A. Therefore:

T ;A
gszggm:% for n=N+1 m=N+1 (106)
Here a scalar quantity g was defined.
Kin .. Kin | —fref
g (B Frer ) (107)
aT g Kni1 ... KnN | —frefnN
a ... an g

4.2 Control strategies

In order to follow the load-displacement path, different types of control methods can be found in
the literature. These can be load control, displacement control or arclength control methods. The
arclength control strategy can be subdivided into normal plane, hyperspherical, global hyperelliptical
or local hyperelliptical approach. Here a predictor-corrector method is used. The examined strategies

are load, displacement and Riks arclength control methods.

4.2.1 Load control method

In the load control method the load increment A\ is constrained to be a specified value. Therefore,

the constraint equation is:

c(AN) = AN — Al =0 (108)

The predictor step trivially consists in updating the value of A to the successive value. The NR method
successively corrects the @ solution. Note that in this case the constraint function c is not dependent

by the displacements vector u. The vector u and the parameter A can be written more explicitly:
C()\—)\k):)\—)\k—Al:O (109)

In these circumstances the vector a and the scalar g are:

oc

am o (110)
Oc
9= =1 (111)

This procedure is not capable of passing the critical points.

4.2.2 Displacement control method

In the displacement control method the displacement increment Aw,, of one the m — th degree of

freedom is constrained to be a specified value. Therefore, the constraint equation is:

c(Aup,) = Auy, — Al =0 (112)
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The predictor step trivially consists in updating the value of the prescribed displacement u; to the
successive value. The NR method successively corrects the a solution. Note that in this case the
constraint function c¢ is not dependent by the load parameter A\. The vector w and the parameter \

can be written more explicitly:
C(um - um,k) = Um — Umk — Al=0 (113)

In these circumstances the vector a and the scalar g are such that:
a; = 5i7n = for = 1, ...,N (114)

g=0 (115)

This procedure is capable of passing the critical points but will not pass the turning points.

4.2.3 Arclength control method

In the Riks arclength method a plane normal to the local tangent vector computed in the last known
configuration that satisfies # = 0 is considered. The constraints equation impose that the considered
increment should have a prescribed distance with respect to the local normal plane (Fig.15). In order to

do that the component x/, of the incremental vector projected on the local tangent vector is considered:

xyy ={Au, AN} -{v/f,1/f} (116)

The value of z,, can be interpreted as the distance from the considered point from the local normal

plane. This component is constrained to be equal to a prescribed distance with respect the local normal

plane:
c(Au, AN =1/f-(v-Au+1-AN)—1=0 (117)
In this case:
a=v/f (118)
g=1/f (119)
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Normal plane (c=0) x={u,\} Space
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(Eq. path)

Figure 15: Arclength method solution predictor-correction scheme

In [13] a predictor-corrector approach is described. This method is here implemented in order to

run the nonlinear analyses with a Riks arclength control pathfollowing method.

5 Case studies: truss structures

5.1 Von Mieses truss

A simple truss structure is here studied, known in literature as Von Mieses (VM). The structure is
composed of two elements. Two different h/a ratios are examined reflecting the intent to study the

different behaviour of a deep VM truss and a shallow VM truss. Following properties are used:

Properties
a = 1000 mm Half basis
h/a Height-half basis ratio
A =100 mm? Cross-sectional area
E =100 N/mm? Elastic modulus

5.1.1 Shallow truss

In this case h/a = 0.3 ratio is used. The expected behaviour can be derived analytically. The member

length as function of the vertical displacement v is:
L2(v) = (h—v)? 4 d? (120)
The length of the member in the reference (non-deformed) configuration is:

L2(v) = L*(v = 0) = h? 4 a? (121)
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The Green-Lagrange strain can be derived as follows:

L 2 L2
e(v) = LQO GL strain (122)
2L5
The member compression force is:
N(v)=FEA-e(v) (123)

The applied load should be equal to the internal forces, which are obtained by considering the vertical

component of the member compression force:
P(v)=2(h—v)/L(v)N(v) (124)

The force P(v) is plotted as function of v in the range [0, 2h] in Fig.19.

100F T T T T T T T T T =

501 7

Force — P [N]

-100C, I I I I |
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Displacement — v [mm]

Figure 16: Analytical solution of load-displacement curve for the shallow Von Mieses truss problem

The structure is discretized with one truss FEM element per each element (Fig. 17). Resulting
charts are shown in Fig.18. Results are in good agreement with the analytical solution. Note that
the determinant presents significant reduction in correspondence of the two critical points. No other

reductions are reported. The different animation frames are illustrated in Fig.19.
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Figure 17: Shallow Von Mieses truss: geometry, discretization , restraints and loading conditions
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Figure 18: Shallow Von Mieses truss: resulting charts



Increment= 0
Increment= 300
Increment= 600
Increment= 900
=== [ncrement= 1200
= [ncrement= 1500

Figure 19: Shallow Von Mieses truss: animation frames for different increments

5.1.2 Deep truss

In this case h/a = 3 ratio is used. Geometry is shown in Fig. 20. Results are shown in Fig.21 with the
progressive motion shown in Fig.22. The structure exhibits snap through behaviour. Differently from
the shallow truss case, the determinant shows a significant reduction in the first hardening branch.
This fact is given by a bifurcation path that is further analysed by giving the truss a positive small
horizontal force at the top node. Results of this case are shown in Fig. 23 and the animation frames

are in Fig.24.
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Figure 20: Deep Von Mieses truss: geometry, discretization, restraints and loading conditions
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Figure 21: Deep Von Mieses truss: resulting charts
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Figure 22: Deep Von Mieses truss: animation frames for different increments
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Figure 23: Deep Von Mieses truss with small horizontal force: resulting charts
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Figure 24: Deep Von Mieses truss: animation frames for different increments

5.2 Shallow arch truss

A shallow arch truss structure is here studied. The truss structure is composed of 131 truss elements.
The arch ends are clamped. A vertical load is applied at the top node. A Riks arclength control

method is exploited. Following properties are used:

Properties
AR=02m Arch thickness
1/R=021/m Arch curvature
h=1m Hogging height
A =0.001m? Cross-sectional area
E = 10000 kN /m? Elastic modulus

The structure is discretized with one truss FEM element per each element (Fig. 25). Resulting
charts are shown in Fig.26. The structure presents a snap through behaviour. Note that the determi-
nant presents significant reduction in correspondence of the two critical points. No other reductions

are reported. The different animation frames are illustrated in Fig.19.
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Figure 25: Shallow arch truss: geometry, discretization, restraints and loading conditions
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Figure 26: Shallow arch truss: resulting charts
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Figure 27: Shallow arch truss: animation frames for different increments

5.3 Cantilever truss

A cantilever restrained truss structure is studied. The structure is loaded with a force at the top end

node. The displacement control method is used. Properties are:

Properties
L=45m Total truss length
h=0.5m Truss height
A =0.01m? Cross-sectional area
E =1000 kN/m? Elastic modulus

The structure is discretized with one truss FEM element per each element (Fig. 28). Resulting
charts are shown in Fig.29. The structure presents hardening behaviour as the fibres align to the load

axis. The different animation frames are illustrated in Fig.30.

2(0.0,0.5)4(0.5,0.5)6(1.0,0.5)8(1.5,0.5)10(2.0,0.5)2(2.5,0.5)4(3.0,0.5) 6(3.5,0.5) 8(4.0,0.520(4.5,0.5)

l 1(2.5) |33419(4.5,0,0)

Figure 28: Cantilever truss: geometry, discretization, restraints and loading conditions
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Figure 29: Cantilever truss: resulting charts
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Figure 30: Cantilever truss: animation frames for different increments

6 Case studies: frame structures

6.1 Cantilever beam under increasing end moment

A first validation consists in verifying that under an increasing concentrated moment at end-node the
structure will deform in a circular manner after a rotation of the end-node of 2-7. This is a benchmark
problem often exploited that can be found for example in []. Validation is also driven by commune own
experience: trying to bend an elastic rod with a uniform moment results in a circular configuration.

The structure consists in a single clamped rod with an end moment. The considered properties are:

Properties
L=10m Rods length
A=1m?2 Cross-sectional area
J=1m* Second moment of section
E =1kN/m? Elastic modulus
v=0.3 Poisson ratio

The load is positioned at the end node. The structure is discretized with 40 Timoshenko elements.
The geometry, constraints and load condition is depicted in Fig.31. A displacement control method
is exploited. The controlled degree of freedom is the rotational of the end node. The number of
increments is set to 100. The rotation is incremented from 0 to 2w. Results are shown in Fig.32.
The deformed configurations for different increments are depicted in Fig.33. At the last increment the
expected circular configuration is reached. The structure exhibits pure linear hardening behaviour and

a load control method could had been used as well.
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Figure 31: Cantilever beam with end moment: geometry, discretization, restraints and loading condi-

tions
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Figure 32: Cantilever beam with end moment: resulting charts
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Figure 33: Cantilever beam with end moment: animation frames for different increments

6.2 Cantilever beam under increasing end force

A second case examines the same structure as the one studied in the previous case but under different
load conditions. Here a point load is considered at the end node. A load control method is used in

order to derive the beam response. Results are compared with those in [9] and [8]. Following properties

are used:

Properties
L=1m Column length
A =0.012m? Cross-sectional area
J=1m* Second moment of section
E =1kN/m? Elastic modulus
v=20.3 Poisson ratio

The structure is discretized with 20 elements as shown in Fig.35. Results are outlined in Fig.34
and the different configurations for increasing increments are shown in Fig.36. The results are in good
agreement with those presented in [9, 8] and shown in figure Fig.37. As the load increases the structure
fibres align to the load axis. The member starting from a purely flexural behaviour correctly captured
in a small displacements elastic linear analysis, gradually enters in a membrane behaviour and starts
working in a tensile state. This is the reason of the hardening behaviour of the structure. In an
analogy this is also what happens when a polymeric structure is stressed under a tensile state as the
polymeric chains forming the microstructure of the materials (firstly randomly oriented) start to align

to the loading axis.
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Figure 34: Cantilever beam with end force: geometry, discretization, restraints and loading conditions
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Figure 35: Cantilever beam with end force: resulting charts
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Figure 36: Cantilever beam with end force: animation frames for different increments
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Figure 37: Cantilever beam with end force: literature results from [9, 8]
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6.3 Buckling of a pinned-roller compressed column

One of the common applications of a nonlinear analysis is to examine the buckling and post-buckling
behaviour of compressed members. A typical problem is represented by the compressed rod restrained
by pinned-roller configuration. In this case an analytical comparison is possible. The analytical solution
can be derived by mean of elliptic integrals. Image Fig.38 (source [6]) represents the load-end rotation

behaviour of the column derived analytically. Black circle points are bifurcation points.

P2
B
5 .‘
] 977%0 !
1
1
| 1
] 1
] 1
\ 1
1 1
\ I
\ 1
\ ]
\ 1
\ ]
\ 4 n2<> ,'
\ /
\ S
\ )__/_/0,
3 big big big big 3 o
-7T - - - 0 - - - s
4 2 4 4 2 4

Figure 38: Buckling of column, analytical solution (from [6])

Following properties are considered:

Properties
L=10m Column length
A =100 m? Cross-sectional area
J=10m* Second moment of section
E =1kN/m? Elastic modulus
G =1kN/m? Shear modulus

The exploited control method is a load-control method. This is possible because the post buckling
behaviour has a pure hardening branch. No softening behaviour occurs. The analysed load multiplier
range will be changed in relation with the examined buckling mode.

The buckling mode is triggered by giving the column a sinusoidal imperfection:
y(x) = e -sin(m - ma/L-) (125)

Here x and y are the nodal coordinates, with x ranging in 0 to L. Where e¢g = and the parameter m
is an integer that refers to the mode that needs to be triggered. Thus for buckling mode 1 m = 1 will

be set, for buckling mode 2 m = 2 and so on. For each buckling mode the relevant critical load can be

computed exploiting the Euler formula:

P, = "EJ (126)




By substituting the used values:
m2n?

100

The structure is discretized with a fine mesh of 100 Timoshenko elements.

P, = .10 &~ m? (127)

6.3.1 Buckling mode 1

The first buckling mode is triggered with an imperfection with parameter ey = 0.05. The parameter
m = 1 is used. A divergence instability is expected due to the small imperfection, with the main load
path lying progressively to the bifurcated path. The meshing and load and restraint condition are
shown in figure Fig.39. Critical load is expected at around P.. = m? = 1 kN. the results and the
deformed configurations for different increments are shown respectively in figures Fig.40 and Fig.41.
The load increases linearly for increasing increments as a consequence of the load control method
choice. The determinant appears having a first decrease in correspondence of A = P, ~ 1 kN. A
second sharper decrease happens at around A = 2 kN. There, probably the bifurcation showed before
(Fig.38) happens. This was however not further examined in this study. Note that before buckling
arises, a small deformation appears for loads smaller than P,,.. This is consequence of the finite axial

stiffness E'A of the column.

N

Y

QLI

WAL A
SN

Figure 39: Column buckling mode 1: geometry, discretization, restraints and loading conditions
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Figure 40: Column buckling mode 1: resulting charts
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Figure 41: Column buckling mode 1: animation frames for different increments

6.3.2 Buckling mode 2

The second buckling mode is triggered with an imperfection with parameter ey = 0.05. The parameter
m = 2 is used. A divergence instability is expected due to the small imperfection, with the main load
path lying progressively to the bifurcated path. The meshing and load and restraint condition are
shown in figure Fig.42. Critical load is expected at around P.. = m? = 4 kN. the results and the
deformed configurations for different increments are shown respectively in figures Fig.43 and Fig.44.
The load increases linearly for increasing increments as a consequence of the load control method choice.
The determinant appears having a first decrease in correspondence of A = P..(m = 1) ~ 1 kN. This
is because the first buckling mode (studied before) is skipped by the structure. A second minimum
appears for A = P..(m = 2) ~ 4 kN. This is the second buckling load. A third sharper decrease
happens at around A = 8 kN. This was however not further examined in this study. The same further

considerations can be done as the mode 1 case.

Figure 42: Column buckling mode 2: geometry, discretization, restraints and loading conditions
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Figure 43: Column buckling mode 2: resulting charts
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Figure 44: Column buckling mode 2: animation frames for different increments

6.3.3 Buckling mode 3

The third buckling mode is triggered with an imperfection with parameter ey = 0.05. The parameter
m = 3 is used. A divergence instability is expected due to the small imperfection, with the main
load path lying progressively to the bifurcated path. The meshing and load and restraint condition are
shown in figure 45. Critical load is expected at around P, = m? = 9kN. The results and the deformed
configurations for different increments are shown respectively in figures Fig.46 and Fig.47. The load
increases linearly for increasing increments as a consequence of the load control method choice. The
determinant clearly decreases with the structure passing at the load levels of the previous two buckling

modes. Another sharp decrease is observed in the post-buckling branch.

Figure 45: Column buckling mode 3: geometry, discretization, restraints and loading conditions
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Figure 46: Column buckling mode 3: resulting charts
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Figure 47: Column buckling mode 3: animation frames for different increments

6.4 Lee’s frame

In this section the resolution of a benchmark problem often referred in literature as ”Lee’s frame” is
solved. Reference to the results obtained in [7] is made. This work was validated on the basis of [12]
that contains other useful reference. Further reference can be made to [11]. The structure consists in

two perpendicular elastic rods. These have the following properties:

Properties
L=120cm Rods length
A =6cm? Cross-sectional area
J=2cm?* Second moment of section
E =720 kN/cm? Elastic modulus
v=20.3 Poisson ratio

The load is positioned at a distance of 24 ¢m from the node connecting the two rods. In analogy
with the work of [7], the structure is discretized with ten Timoshenko elements for each rod. The
geometry, constraints and load condition is depicted in Fig.48. The monitored degree of freedom is
the vertical displacement of the loaded node. The structure is solved exploiting the implemented Riks
arclength pathfollowing method with a single step and a total of 500 increments. The value of arc
length increment is set to As = 1.3. Results are shown in Fig.49. The deformed configurations for
different increments are depicted in Fig.50. Results are in good agreement with the reference works
of [7] and [12]. The structure exhibits snap back behaviour with multiple turning points and critical
points. Note that the determinant presents significant reduction in correspondence of the critical

points.
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Figure 48: Lee’s frame: geometry, discretization, restraints and loading conditions
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Figure 49: Lee’s frame: resulting charts
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Figure 50: Lee’s frame: animation frames for different increments
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Figure 51: Lee’s frame: literature results from [7]. Good agreement with the present study results can

be seen from comparison of the vertical displacement evolution

52



6.5 Frame lateral instability

A frame composed of two vertical columns and one horizontal beam is studied. Base restraints consist
in pinned ends. The purpose is to study the frame’s lateral instability behaviour and the post-buckling
response. In order to trigger the lateral instability a small horizontal load is set. The lateral instability
consists in a bifurcated path respect to the main load path. The main load path will also be shown. The
Riks arclenght control stratecy is exploited. The load is applied at mid-span of the beam. Following

properties are exploited:

Properties
L = 10000 mm Rods length
A =100 cm? Cross-sectional area
J = 10000 cm* Second moment of section
E = 200000 M Pa Elastic modulus
v=20.3 Poisson ratio

Geometric configuration, load disposition and meshing are shown in figure ?7. The mesh consists

in 30 Timoshenko elements per each rod. The load path is derived with 500 increments.

6.5.1 Lateral instability

Figure 52: Portal lateral instability: geometry, discretization, restraints and loading conditions
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Figure 53: Portal lateral instability: resulting charts
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Figure 54: Portal lateral instability: animation frames for different increments

6.5.2 Main load path

In this case no lateral force is applied in order to trigger the lateral instability. Results are shown in
figures Fig.56 and Fig.57. The structure exhibits a softening behaviour after a critical load. Note that
the determinant decreases in correspondence of the load level at which the previous studied case was

exhibiting the lateral instability starting to take the bifurcated path.
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Figure 55: Portal main load path: geometry, discretization, restraints and loading conditions
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Figure 56: Portal main load path: resulting charts
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Figure 57: Portal main load path: animation frames for different increments

6.6 Shallow arch

A shallow arch is resolved. The arch is loaded with a vertical force impressed at the top node. Following

properties are exploited:

Properties
R =100cm Radius
0=2-20.3=40.6 Arch angle
J=1cm?* Second moment of section
A=1cm? Second moment of section
E =200 N/cm? Elastic modulus
v=20.5 Poisson ratio

6.6.1 Main path

The number of elements used is 50 Timoshenko elements (Fig.58). The structure exhibits snap through
behaviour Fig.59. The animation frames can be appreciated in Fig.60. The determinant has a reduction
on the first loading branch before the critical point occurs. This consists in a bifurcation point which

is further examined below.
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Figure 58: Pinned shallow arch main path: geometry, discretization, restraints and loading conditions
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Figure 59: Pinned shallow arch main path: resulting charts



Figure 60: Pinned shallow arch main path: animation frames for different increments

6.6.2 Bifurcated path

The structure bifurcated path is triggered with a small point moment at the tip of the arch structure

(Fig.61). Results are shown in Fig.62. The animation frames can be appreciated in Fig. 63.
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Figure 61: Pinned shallow arch bifurcated path: geometry, discretization, restraints and loading con-

ditions
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Figure 62: Pinned shallow arch bifurcated path: resulting charts
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Figure 63: Pinned shallow arch bifurcated path: animation frames for different increments

6.7 Deep arch

A round arch structure is studied here. Reference to results contained in [7, 14] is made.

Properties
R=127cm Radius
6 =2-90 =180 Arch angle
J = 41.62 em* Second moment of section
A = 64.52 cm? Cross section area
E =0.1378 N/cm? Elastic modulus
v =205 Poisson ratio

The structure (Fig.64) is discretized with 50 Timoshenko elements according with [7, 14]. The
structure is solved with Arclength Riks method. The number of increments is 7500. Results are shown
in Fig.65. The structure performs different loops in the load-deflection plane. The responce is in

perfect accordance with [7] (Fig.67).
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Figure 64: Pinned round arch: geometry, discretization, restraints and loading conditions
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Figure 65: Pinned round arch: resulting charts
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Figure 66: Pinned round arch: animation frames for different increments
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Figure 67: Pinned round arch: literature results from [7]

6.8 Elastic circle

The nonlinear analysis on the response of a vertically loaded elastic circle is shown. The structure is
restrained at the bottom node with an encastre. At the top node a vertical point load is applied. In
addition a small moment is applied in the same node in order to derive the response of the bifurcated

load path. the properties are set as follows:

Properties
R=10cm Radius
A=0.1cm? Cross-sectional area
J =0.1cm? Second moment of section
E = 1000 N/cm? Elastic modulus
v=20.3 Poisson ratio

The Riks arclength method is used. The arclength parameter As is set to 1.The circular structure

is discretized into 100 Timoshenko elements.
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6.8.1 Bifurcated path

Figure 68: Circular structure main load path: geometry, discretization, restraints and loading condi-

tions
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Figure 69: Circular structure main load path: resulting charts
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Figure 70: Circular structure main load path: animation frames for different increments

6.8.2 Main path

In order to follow the main path the small tip moment is removed. Just the vertical load is applied to
the top structure node. The load-vertical displacement response is almost linear. A sharp decrease of

the determinant value occurs in the region where the bifurcated path joints the main path.

6.8.3 Bifurcated path

Figure 71: Circular structure bifurcated path: geometry, discretization, restraints and loading condi-

tions
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Figure 72: Circular structure bifurcated path: resulting charts
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Figure 73: Circular structure bifurcated path: animation frames for different increments

6.9 Cellular material sample

The mechanical behaviour of a cellular material structure is tested. The shape is inspired by the
TAVR valves in biomedical applications. The structure consists in a 6 x 5 rows per columns matrix of
cells. The arranged cells have sinusoidal shaped walls and each cell consists in 6um x 2um dimensions.
Cellular walls are modelled with Timoshenko beam type elements. The structure is clamped ad one
side and increasing forces are applied at the other side end-nodes. Both solicitations of tensile loading

and compression will be tested. The following properties are used:

Properties
A=0.1pm? Cross sectional area
J=0.1um* Second moment of section
E =1000 N/um? Elastic modulus
v=20.5 Poisson ratio

The structure is discretized with 432 nodes and 540 Timoshenko elements. A Riks arclength method
is used with As and a total number of increments of 100 is used.
6.9.1 Tensile loading

Tensile forces are applied at end nodes. The structure is shown in Fig.74. Resulting charts can be
appreciated in Fig.75. The animation frames for different time increments are illustrated in Fig.76.

The structure has an hardening behaviour as the fibers align to the load axis.
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Figure 74: Cellular material sample structure: geometry, discretization, restraints and loading condi-

tions
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Figure 75: Cellular material sample structure: resulting charts
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Figure 76: Cellular material sample structure: animation frames

6.9.2 Compression loading: main path

Compression forces are applied at end nodes. The structure is shown in Fig.77. An additional con-
straint is added on the vertical displacement of end nodes in order to prevent local instabilities in
the areas of force introduction. A more correct approach in order to apply the force on one side of
the sample would involve a definition of a tie constraint (rigid body constraint) on all the end nodes.
Resulting charts can be appreciated in Fig.78. The animation frames for different time increments are
illustrated in Fig.79. The structure has an hardening behaviour. A significant reduction of the tangent
stiffness matrix determinant occur at a certain spot. The reduction occurs due to a bifurcation of the
load path. As shown by the main load path determinant, the buckling mode is expected for a value of

about A = 22 of the load multiplier.
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Figure 77: Cellular material sample structure: geometry, discretization, restraints and loading condi-

tions
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Figure 78: Cellular material sample structure: resulting charts
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Figure 79: Cellular material sample structure: animation frames

6.9.3 Compression loading: buckling mode

A small non-simmetry is introduced here in the forces values to trig the buckling mode. As shown by
the main load path determinant, the second buckling mode is expected for a value of about A = 22 of
the load multiplier. Compression forces are applied at end nodes. The structure is shown in Fig.80.
Resulting charts can be appreciated in Fig.81. The animation frames for different time increments are
illustrated in Fig.82. The structure has an hardening behaviour. A significant reduction of the tangent

stiffness matrix determinant occur at a certain spot.

Figure 80: Cellular material sample structure: geometry, discretization, restraints and loading condi-

tions
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Increment= 0
=== ncrement= 100

Figure 82: Cellular material sample structure: animation frames

7 Conclusions

A structural analysis software for planar structure analysis in large deflection has been successfully
developed in this work. Results have been proven to be in agreement with other literature works.
Multiple case studies of engineering interest have been analysed showing both the deformation evolution
and the load-displacement path.

Further future implementation and improvement of the code might be:

e further control methods developement (spherical, hyperspherical, hyperelliptical, local hyperel-

liptical controls);
e other elements formulations;
e implementing buckling analysis (eigen problem resolution);

e program enhancement of tools (example: importing structure geometry and data from excel or

an improving in exporting the outputs);
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A Appendix: Code lines and program structure

As complementary content, the Python code constituting the program is here shown and commented.
An overview of the code structure is given and the raw code lines are introduced and briefly de-
scribed. In the code the analytical defined quantities are recognisable. The code tries to be as much
self-explanatory as possible exploiting the Python coding style. The important functions for computa-
tional mechanics purposes are illustrated and explained. Auxiliary functions (such as result plotting,

animation plotting, reset, user input, interface building functions) are omitted.

A.1 Python language brief introduction

Python is an interpreted, object-oriented, high level programming language. A python code can be
written exploiting integrated development environments (IDEs) such as PyDev, PyCharm, Visual
Studio Code (...). For this work PyCharm was exploited but other environments are valid choices
as well. Python presents valid alternatives to other computational, analytical and engineering tools
such as Matlab or Mathematica. An important feature of python language is the availability of
already implemented libraries that can be found. The libraries constitute extensions to the raw python
languafige capabilities. Important libraries that have been exploited in this work are the numpy library
that enables to perform linear algebra calculations, the matplotlib library that consent to plot graphics
such as charts, the kivy library that allowst to structure the user interface.

The python code is structured in Class objects: a Class is an object constructor (a ”blueprint”
for constructing structured objects). A Class contains properties and methods. The properties are
variables that are associated with the defined object. Methods are basically functions which are strictly

related to the class. Other important tools in a python code are functions.

A.2 Joint class

A joint object is constructed according to the Joint class (Fig.83). The joint class contains general
attributes like the number of joints defined, the dof number of the Joint class, the dofs labels. a Joint
object has a name, an x1 coordinate a x2 coordinate and a ”Restraint” and a ”JointLoad” object.
These last two are constructed according to different classes described in Fig.85. The Joint class has
different methods. Most important methods are shown in Fig.84. The "nodal load vector” method
returns a 3-vector containing the nodal force components. The connectivity matrix is 3 x N matrix
that allows to shifting to the structural dofs, that has N total dofs, to the joint object dofs, that has
3 dofs, with a simple matrix multiplication operation. The vice-versa operation is of course possible

by transposing this matrix.
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\joint\joint.py
3 class Joint: #class

4 num_of_joints=0

5 dofs_number = 3

6 dofs_labels = ['u', 'v', 'theta']
7

8 def __init__(self, name, x1, x2, restraints, jointlLoads):
9 self.name=name

10 self.x1=x1

11 self.x2=x2

12 self.restraints=restraints
13 self.jointLoads = jointLoads
14 self.dofs_list=[]

15 Joint.num_of_joints+=1

Figure 83: Joint class definition and object initialization procedure

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\joint\joint.py

21 def nodal_load_vector(self):

22 ret=np.transpose(np.array([[self.jointLoads.P1,self.jointLoads.P2,self.jointLoads.P3]1]))
23 return ret

24

25 def connectivity_matrix(self, dofs_number):

26 a = np.zeros((Joint.dofs_number, dofs_number))

27 for i in range(Joint.dofs_number):

28 ali, self.restraints.globalDOF[i]-1] = 1

29

30 return np.array(a)

Figure 84: Joint class: nodal load vector and connectivity matrix methods

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\joint\joint.py
46 class Jointload:

47 def __init__(self, Pl=None, P2=None, P3=None):

48 if P1==None:

49 P1=0

50 if P2==None:

51 P2=0

52 if P2==None:

53 P3=0

54 self.P1=P1

55 self.P2=P2

56 self.P3 = P3

57

58 class Restraint:

59 def __init__(self, flags=None, globalDOF=None):

60 if globalDOF is None:

61 globalDOF = [-1, -1, -1]

62 if flags is None:

63 flags = [0, 0, 0]

64

65 self.flags = flags

66 self.globalDOF=globalDOF #(-1= unassigned; O=unactive; >0=active and assigned to corresp.
number)

67

68 def reset(self):

69 self.globalDOF= [-1, -1, -1]

70

71 def flag_ul(self):

72 return self.flags[0]

73

74 def flag_u2(self):

75 return self.flags[1]

76

77 def flag_u3(self):

78 return self.flags[2]

Figure 85: Other classes: the ”JointLoad” class and the ”Restraint” class
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A.3 TrussElement class

The ”TrussElement” class (Fig.86) provides the construction of the Truss element type object. The
definition needs a name, two ”Joint” objects, a cross section area in the reference configuration and

the Young’s modulus.

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_truss\finite_elements\truss_element.py

3 class TrussElement:
num_of_frameElements = 0

4
5

6 def __init__(self, name, jointl, joint2, E, A, t0):
7 self.name=name

8 self.jointl=jointl

9 self.joint2=joint2

10 self.E = E

11 self.A = A

12 self.t0 = tO

13 self.restraints_jointl=Restraint(flags=[1, 1])
14 self.restraints_joint2=Restraint(flags=[1, 11)
15 self.animation = None

16

17 self.displacements=np.array([0,0,0,0])

18

19 TrussElement.num_of_frameElements+=1

Figure 86: ”TrussElement” class definition and initialization procedure

In Fig.87 the connectivity matrix and the rotation matrix are provided.

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_truss\finite_elements\truss_element.py

49 def connectivity_matrix(self, dofs_number):

50 a=np.zeros((4,dofs_number))

51 for i in range(2):

52 for j in range(dofs_number):

53 if self.restraints_jointl.globalDOF[i]==j+1:
54 ali,jl=1

55 if self.restraints_joint2.globalDOF[i]==j+1:
56 ali+2,j1=1

57 return np.array(a)

58

59 def rotation_matrix(self):

60 phi=self.angle()

61 cos = np.cos(phi)

62 sin = np.sin(phi)

63 rotationMatrix=np.array([[cos, sin, 0, 0], [-sin, cos, 0, 8], [0, O, cos, sin],
64 [0, 8, -sin, cos]])

65 return np.array(rotationMatrix)

Figure 87: Truss element class: connectivity matrix and rotation matrix (reference configuration)

methods

The green lagrange strain measure e, the conjugate PK stress ¢, the matrix M, the vector By and

the vector B according to what defined in the analytical description are shown in Fig.88.

82



File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_truss\finite_elements\truss_element.py

67 def strainGL_e(self):

68 BO=self.vector_BO()

69 u=self.displacements

70 M=self.matrix_MQ)

71

72 e=np.dot(BB,u)+0.5%np.dot(np.transpose(u),np.dot(M, u))
73 return e

74

75 def stress_t(self):

76 return self.tO+self.Exself.strainGL_e()

77

78 def matrix_M(self):

79 length=self.length()

80 LO_quad=1length*x*2

81 return 1/L0_quad*np.array([[1,0,-1,0],[0,1,0,-1]1,[-1,0,1,0],[6,-1,0,111)
82

83 def vector_BO(self):

84 LO = self.length()

85 cOx=np.cos(self.angle())

86 cOy = np.sin(self.angle())

87 BO=1/LOxnp.array([[-cBx, -cBy, cOx, cOyll)

88 return BO

89

90 def vector_B(self):

91 u=self.displacements

92 B=np.add(self.vector_BO(),np.dot(np.transpose(u), self.matrix_M()))

Figure 88: Truss eleemnt class: methods returning the green lagrange strain measure, the Piola-

Kirchhoff stress, and the analytically defined vectors and matrices M, B, By

The element tangent stiffness matrix and the internal forces vector are finally computed as in

Fig.89.

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_truss\finite_elements\truss_element.py

95 def nodal_loads_p_internal_forces(self):
96 LO=self.length()

97 AD=self.A

98 t=self.stress_t()

99 B=self.vector_B()

100 p=np.transpose (LOxAOxt*B)

101 return p

102

103 def material_stiffness_matrix_KM(self):
104 E=self.E

105 AB=self.A

106 LO=self.length()

107 B=self.vector_B()

108 return ExAOxLO*np.outer(B,B)

109

110 def axial_force_f(self):

111 return self.Axself.stress_t()

112

113 def geometric_stiffness_matrix_KG(self):
114 F=self.axial_force_f()

115 LO=self.length()

116 M=self.matrix_M()

117 return FxLOxM

118

119 def nl_stiffness_matrix_TL(self):

120 kM=self.material_stiffness_matrix_KM()
121 kG= self.geometric_stiffness_matrix_KG()
122 return np.add(kG, kM)

Figure 89: Truss element class: internal forces vector and tangent stiffness matrix methods

A.4 TimoshenkoBeam class

The ”TimoshenkoBeam” class (Fig.90) allows to define Timoshenko Beam type elements. The ” Tim-

oshenkoBeam” is a 6-dofs finite element. The object is defined providing a name, two ”Joint” type
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objects, two restraint type objects, the vearious material modulus, sectional area and inertia second
moment of the section.

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\finite_elements\timoshenko_beam.py

4 class TimoshenkoBeam():
5 dofs_number=6

6 dofs_labels=['ul','vl', 'thetal', 'u2', 'v2', 'theta2'l]
7
8 def __init__(self,name, jointl, joint2, restraints_jointl, restraints_joint2, E, G, A@, IO, NO, VO
, MO):
self.name=name
10 self.jointl=jointl
11 self.joint2=joint2
12 self.restraints_jointl=restraints_jointl
13 self.restraints_joint2 = restraints_joint2
14 self.E=E
15 self.6=6
16 self.AD=A0
17 self.I0=I0
18 self.NO = NO
19 self.vo = VO
20 self.M0 = MO
21 self.displacements=None
22
23 self.EAQ=self.Exself.AD
24 self.GAO=self.Gxself.AD
25 self.EIO=self.Exself.IO
26
27 self.animation = None

Figure 90: ”TimoshenkoBeam” class definition and initialization procedure

First important methods of the ” TimoshenkoBeam” class are the rotation matrix and the connec-

tivity matrix (Fig.91).

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\finite_elements\timoshenko_beam.py
32 def connectivity_matrix(self, global_dofs_number):

33 a=np.zeros((TimoshenkoBeam.dofs_number,global_dofs_number))

34 for i in range(3):

35 for j in range(global_dofs_number):

36 if self.restraints_jointl.globalDOF[i]==j+1:

37 ali,jl=1

38 if self.restraints_joint2.globalDOF[i]==j+1:

39 ali+3,jl=1

40 return np.array(a)

41

42 def rotation_matrix(self):

43 phi = self.undeformed_phi()

44 cos = np.cos(phi)

45 sin = np.sin(phi)

46 rotationMatrix = np.array(

47 [[cos, sin, O, O, 0, 0], [-sin, cos, O, 0, 0, 0], [0, 0, 1, 68, O, 0], [6, O, O, cos, sin
, 6],

48 [6, 0, 8, -sin, cos, 0], [0, 6, 0, 6, 0, 1]11)

49 return np.array(rotationMatrix)

Figure 91: Timoshenko beam element connectivity and rotation matrices methods

The current and reference configuration length and angles can be derived with the functions of

Fig.92.
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\finite_elements\timoshenko_beam.py

56 def undeformed_length(self):

57 return np.sqrt((self.joint2.x1-self.jointl.x1)**2+(self.joint2.x2-self.jointl.x2)**2)

58

59 def current_length(self):

60 x21=self.joint2.x1-self.jointl.x1+self.displacements[3,0]-self.displacements[0,0]

61 y21 = self.joint2.x2 - self.joint1l.x2 + self.displacements[4,0] - self.displacements[1,0]
62 return np.sqrt((x21)**2+(y21)**2)

63

64 def undeformed_phi(self):

65 return np.arctan2((self.joint2.x2-self.joint1l.x2), (self.joint2.x1-self.jointl.x1))

66

67 def current_phi(self):

68 x21 = self.joint2.x1 - self.jointl.x1 + self.displacements[3,0] - self.displacements[0,0]
69 y21 = self.joint2.x2 - self.jointl.x2 + self.displacements[4,0] - self.displacements[1,0]
70 return np.arctan2((y21), (x21))

71

72 def psi(self):

73 return self.current_phi()-self.undeformed_phi()

Figure 92: Timoshenko beam element current and reference configuration useful methods

The useful defined vectors also defined in the analytical description of the formulation are defined

according to the methods of Fig.93.

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\finite_elements\timoshenko_beam.py

75 def Bm(self):

76 L_O=self.undeformed_length()

77 L=self.current_length()

78 theta_m = (self.displacements[2,0] + self.displacements[5,0]) / 2

79 phi = self.undeformed_phi()

80 omega_m = theta_m + phi

81 c_m = np.cos(omega_m)

82 s_m = np.sin(omega_m)

83 psi=self.psi()

84 e.m =1L / L_@ % np.cos(theta_m - psi)-1

85 gamma_m = L / L_O % np.sin(psi - theta_m)

86

87 Bm_matrix=np.transpose(1/L_B*np.array([[-c_m, -s_m, 0.5%L_0%gamma_m, c_m, s_m, 0.5%L_0%
gamma_m],

88 [s_m, -c_m, -0.5%L_0%(1+e_m), -s_m, c_m, -0.5%L_0%(1+e_m)],

89 [0,0,-1,0,06,111))

90 return Bm_matrix

91

92 def h_vector(self):

93 L_0 = self.undeformed_length()

94 L = self.current_length()

95 theta_m = (self.displacements[2,0] + self.displacements[5,0]) / 2

96 psi = self.psi()

97 em =1L/ L0 % np.cos(theta_m - psi)-1

98 gamma_m = L / L_® % np.sin(psi - theta_m)

99 curvature=1/L_0%(self.displacements[5,0]-self.displacements[2,0])

1600

101 return np.transpose(np.array([e_m, gamma_m, curvature]))

102

103 def z_vector(self):

104 NO=self.NO

105 VO=self.VO

106 MO=self.MO

107

108 EAO=self.EAO

109 GAB=self.GAO

110 EIO=self.EIO

111

112 h=self.h_vector()

113

114 N=NO+EAOxh[0]

115 V=V0+GAOxh[1]

116 M=MO+EIOxh[2]

117

118 return np.transpose(np.array([[N, V, M]1]))

Figure 93: Timoshenko beam element: methods returning the analytically defined vectors
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” N » N

The ”internal nodal forces”, ”material stiffness matrix”, ” geometric stiffness matrix”, total tangent

"non linear stiffness matrix”, are derived according to the methods shown in Fig.94 and Fig.95.
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\finite_elements\timoshenko_beam.py

120 def internal_nodal_forces(self):

121 z=self.z_vector()

122 Bm_matrix=self.Bm()

123 L_0=self.undeformed_length()

124

125 return L_0*np.dot(Bm_matrix, z)

126

127 def material_stiffness_matrix(self):

128 EAO=self.EAQ

129 EIO=self.EIO

130 GAO=self.GAO

131 L_0 = self.undeformed_length()

132 L = self.current_length()

133 theta_m = (self.displacements[2,0] + self.displacements[5,0]1) / 2

134 phi = self.undeformed_phi()

135 omega_m = theta_m + phi

136 c_m = np.cos(omega_m)

137 s_m = np.sin(omega_m)

138 psi = self.psi()

139 em =L/ L_® % np.cos(theta_m - psi)-1

140 gamma_m = L / L_@ * np.sin(psi - theta_m)

141 a_l=l+e_m

142

143 k_ma=EAQ/L_B*np.matrix([[c_m**2, c_m*s_m, -c_mxgamma_mxL_0/2, —c_mx*2, -c_m*s_m, -C_m*gamma_m
xL_0/21,

144 [c_m¥s_m, s_mx%2, -gamma_mxL_0%s_m/2, —c_mks_m, -s_m%*2, -gamma_mxL_0xs_m/2],

145 [-c_m¥xgamma_mxL_0/2, -gamma_mxL_Oxs_m/2, gamma_mxx2%L_0%%2/4, c_mxgamma_mxL_0/
2, gamma_mxL_0%s_m/2, gamma_m#%2xL_0x%2/4],

146 [-c_m%%2, -c_m¥s_m, c_mxgamma_mxL_0/2, c_m%*2, c_ms_m, c_mxgamma_mxL_0/2],

147 [-c_m¥s_m, -s_mxx2, gamma_mxL_0%s_m/2, c_mxs_m, s_m%*2, gamma_m%L_B%s_m/2],

148 [-c_m*gamma_m%L_0/2, -gamma_mxL_O%s_m/2, gamma_m*x2%L_0%%2/4, c_mxgamma_mxL_0/
2, gamma_mxL_0%s_m/2, gamma_m#%2xL_0%%2/411)

149

150 k_mb=EIO/L_O*np.matrix([[0,0,0,0,0,0],

151 [0,0,0,0,0,0],

152 [0,0,1,0,0,-1],

153 [0,0,0,0,0,0],

154 [0,0,0,0,0,0],

155 [0,0,-1,0,0,111)

156

157 k_ms=GAB/L_0*np.matrix([[s_m**2, -c_m*s_m, -a_1%L_0%s_m/2, -s_m**2, c_m*s_m, -a_l1xL_0%s_m/2],

158 [-c_m¥s_m, c_m*x2, c_m%a_1%L_0/2, c_mks_m, -c_mxx2, c_mxa_1xL_0/2],

159 [-a_1xL_0xs_m/2, c_mxa_1%L_0/2, a_1#x%2%xL_0%%2/4, a_lxL_0%s_m/2, -c_m*
a_1xL_0/2, a_lx#*2xL_0%%2/4],

160 [-s_mxx2, c_m¥s_m, a_lxL_O0*%s_m/2, s_mxx2, -c_m¥s_m, a_lxL_Oxs_m/2],

161 [c_mxs_m, -c_m%%2, -c_m*a_1%L_0/2, -c_m¥s_m, c_m**2, -c_m¥a_1xL_0/2],

162 [-a_1xL_0xs_m/2, c_mxa_1%L_0/2, a_1#x%2%xL_0%%2/4, a_lxL_0%s_m/2, -c_m%
a_1%L_0/2, a_1x*2xL_0%%2/411)

163

164 k=k_ma+ k_mb+k_ms

165

166 return k

167

168 def geom_stiffness_matrix(self):

169 L_0=self.undeformed_length()

170 L_6h=L_0/2

171 L_0 = self.undeformed_length()

172 L = self.current_length()

173 theta_m = (self.displacements[2,0] + self.displacements[5,0]1) / 2

174 phi = self.undeformed_phi()

175 omega_m = theta_m + phi

176 c_m = np.cos(omega_m)

177 s_m = np.sin(omega_m)

178 psi = self.psi()

179 e.m =L / L_® % np.cos(theta_m - psi) - 1

180 gamma_m = L / L_O * np.sin(psi - theta_m)

181 z = self.z_vector()

182 N_m=z[@,0]

183 V_m=z[1,0]

184

185 k_g1=N_m/2%np.matrix([[0,0,s_m,0,0,s_m],

186 [0,0,-c_m,0,0,-c_n]

187 [s_m, -c_m, -L_Bhx(1+e_m), -s_m, c_m, -L_Gh*(1+e_m)],

188 [0,0,-s_m,0,0,-s_m],

189 [0,0,c_m,0,0,c_m],

190 [s_m,-c_m,-L_Bhx(1+e_m), -s_m, c_m, -L_Bh*(1+e_m)]11)

191

192 k_g2=V_m/2xnp.matrix([[6,0,c_m,0,0,c_m],

193 [0,0,s_m, 0,0, s_m],

194 [c_m, s_m, -L_8hxgamma_m, -c_m, -s_m, -L_Bh%gamma_m],

195 [0,0,-c_m, 0,0,-c_m],

Figure 94: Timoshenko element: internal forces vector, material stiffness matrix, geometric stiffness

matrix and tangent stiffness matrix methods
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\finite_elements\timoshenko_beam.py

196 [0,0,-s_m, 0,0,-s_m],

197 [c_m, s_m, -L_8hxgamma_m, -c_m, -s_m, -L_Bh%gamma_m]])
198

199 return k_gl+k_g2

200

201 def nl_stiffness_matrix(self):

202 kM=self.material_stiffness_matrix()

203 kG=self.geom_stiffness_matrix()

204 return kM+kG

Figure 95: Timoshenko element: total tangent stiffness matrix method definition

A.5 Structure class

The ”Structure” class (Fig.96) is a Python class object that has a list of ” TimoshenkoElement” or
"TrussElement” objects and a list of ”Joint” objects. Moreover the ”Structure” class contains a
”displacement” vector in that the current configuration displacement components of the structure are
collected. Another important variable associated with the Structure Class is the ”.dofs” and ”.active

dofs” variable that contain the list of the structural dofs and the active dofs.

- C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py

class Structure():
def __init__(self, frameElementArray, jointsArray):

self.jointsArray=jointsArray
self.frameElementArray=frameElementArray
self.displacements=None
self.restrained_dofs = None
self.dofs=0
self.active_dofs=0
self.initialized=False
self.lambda evolution=[1

Figure 96: Structure class definition and object initialization procedure

When running a generic analysis (elastic or nonlinear) the first thing is done is an initialization
process. Having a list of joints and elements object the "assign dofs” (Fig.97) method initializes the

structure by assigning the degree of freedoms.
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py
90 def assign_dofs(self):

91 count_assigned_DOFs = 0

92 count_active_dofs = 0

93 restrained_dofs = []

94 rotational_dofs=[]

95

96 def add_dof_to_joint(k, joint, restr):

97 if k == 0:

98 new_dof = Dof(name=count_assigned_DOFs, direction=0, restrained=restr)
99 elif k == 1:

100 new_dof = Dof(name=count_assigned_DOFs, direction=1, restrained=restr)
101 elif k == 2:

102 new_dof = Dof(name=count_assigned_DOFs, direction=2,restrained=restr)
103 joint.dofs_list.append(new_dof)

104

105 for i in self.frameElementArray:

106 for j in range(2):

107 if j==0:

108 joint=i.jointl

109 elem_restraints=i.restraints_jointl

110 elif j==1:

111 joint = i.joint2

112 elem_restraints = i.restraints_joint2

113

114 for k in range(type(joint).dofs_number): # nodo 1 elemento i-esimo
115 restraintStatus = joint.restraints.flags[k] * elem_restraints.flags[k]
116 if restraintStatus == 0:

117 if joint.restraints.flags[k] == 0 and elem_restraints.flags[k] == 1:
118 if joint.restraints.globalDOF[k] > 0:

119 elem_restraints.globalDOF[k] = joint.restraints.globalDOF[k]
120 if joint.restraints.globalDOF[k] < 0:

121 count_assigned_DOFs += 1

122 add_dof_to_joint(k, joint,False)

123

124 if k==2:

125 rotational_dofs.append(1)

126 else:

127 rotational_dofs.append(0)

128 count_active_dofs += 1

129 restrained_dofs.append(0)

130 joint.restraints.globalDOF[k] = count_assigned_DOFs
131 elem_restraints.globalDOF[k] = count_assigned_DOFs
132 else:

133 count_assigned_DOFs += 1

134 add_dof_to_joint(k, joint, False)

135

136 if k == 2:

137 rotational_dofs.append(1)

138 else:

139 rotational_dofs.append(0)

140 count_active_dofs += 1

141 restrained_dofs.append(0)

142 elem_restraints.globalDOF[k] = count_assigned_DOFs

143 if restraintStatus == 1:

144 if joint.restraints.globalDOF[k] > O:

145 elem_restraints.globalDOF[k] = joint.restraints.globalDOF[k]
146 else:

147 count_assigned_DOFs += 1

148 add_dof_to_joint(k, joint, True)

149 if k == 2:

150 rotational_dofs.append(1)

151 else:

152 rotational_dofs.append(0)

153 restrained_dofs.append(1)

154 joint.restraints.globalDOF[k] = count_assigned_DOFs

155 elem_restraints.globalDOF[k] = count_assigned_DOFs

156

157 print('Restrained DOFs: {}'.format(restrained_dofs))

158 print('Number of DOFs: {}'.format(count_assigned_DOFs))

159 print('Number of active DOFs: {}'.format(count_active_dofs))

160 print('Rotational DOFs: {}'.format(rotational_dofs))

161

162 self.active_dofs=count_active_dofs

163 self.bounding_box=self.get_bounding_box()

164 self.dofs = count_assigned_DOFs

Figure 97: Structure class: DOFs assignment method

The ”reduction matrix” method (Fig. 98) of the ”Structure” class allows to compute a matrix

composed of zeros and ones components that consent to get the reduced vector and matrices when
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multiplied by the correspondent global vector and matrices.

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py
171 def reduction_matrix(self):

172 r_matrix=np.zeros((self.dofs, self.active_dofs))
173 j=0

174 for i in range(self.dofs):

175 if self.restrained_dofs[i]==0:

176 r_matrix[i,jl=1

177 j+=1

178

179 return np.array(r_matrix)

Figure 98: Structure class: reduction matrix method

The external forces vector in global and reduced formats can be computed with the functions of

Fig.99.

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py

206 def reduced_external_forces(self):

207 r_matrix = self.reduction_matrix()

208 return np.dot(np.transpose(r_matrix), self.global_external_forces())
209

210 def global_external_forces(self):

211 p_glob=np.zeros((self.dofs,1))

212 for i in self.jointsArray:

213 p_1=i.nodal_load_vector()

214 a = i.connectivity_matrix(self.dofs)

215 p_glob=np.add(p_glob,np.dot(np.transpose(a),p_1))
216 return p_glob

Figure 99: Structure class: reduced and global external forces vectors methods

The internal forces vector in global and reduced formats can be computed with the functions of

Fig.100.

File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py

194 def reduced_internal_forces(self):

195 r_matrix = self.reduction_matrix()

196 return np.dot(np.transpose(r_matrix), self.global_internal_forces())
197

198 def global_internal_forces(self):

199 p_glob = np.zeros(shape=(self.dofs, 1))

200 for i in self.frameElementArray:

201 a = i.connectivity_matrix(self.dofs)

202 p_internal = i.internal_nodal_forces()

203 p_glob = np.add(p_glob, np.dot(np.transpose(a), p_internal))
204 return p_glob

Figure 100: Structure class: reduced and global internal forces vectors methods

The reduced and global tangent stiffness matrices can be computed according with the code lines

of Fig.101.
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py

181 def global_geom_nl_stiffness_matrix(self):

182 k_glob=np.zeros((self.dofs, self.dofs))

183

184 for i in self.frameElementArray:

185 a = i.connectivity_matrix(self.dofs)

186 Knl = i.nl_stiffness_matrix()

187 k_glob=np.add(k_glob,np.dot(np.transpose(a),np.dot(Knl,a)))
188 return np.array(k_glob)

189

190 def reduced_geom_nl_stiffness_matrix(self):

191 red=self.reduction_matrix()

192 return np.dot(np.transpose(red), np.dot(self.global_geom_nl_stiffness_matrix(), red))

Figure 101: Structure class: reduced and global tangent stiffness matrix methods

The solver method (Fig.102, Fig.103, Fig.104, Fig.105) is a function strictly associated with the
Structure class that allows to perform the incremental nonlinear analysis. The number of increments,
the maximum iterations number for the correction step and the residual tolerance are set.

The strcuture can be solved by different solver methods. First by exploiying an internal python
solver exploited from the ”scipy” library that contains various rootfinding methods. In the shown case
a Sequential Least Squares Programming (SLSQP) is for example exploited in order to minimize the
residual. As second option the "my nr” case provides an incremental predictor-corrector method that
can rely on different control strategies such as the load control, displacement control and arclength
control method. As last option the "my nr arclength” option provides a Riks arclength method

implemented according to [5].
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py
230 def solve_structure_nl_geom_analysis(self, u_max, controlled_dof):

231 solver="my_nr_arclength'

232 control_strategy = 'load'

233 number_of_steps = 500

234 max_num_iterations=100

235 eps_r=0.0001

236

237 if solver == 'internal_python':

238 self.imposed_u = 0.0

239 self.controlled_dof = controlled_dof

240 u = np.dot(np.transpose(self.reduction_matrix()), self.displacements)

241 multiplier_lambda = 0

242 unknowns = np.insert(np.delete(u, controlled_dof), controlled_dof, multiplier_lambda)

243

244 for step in range(number_of_steps):

245 print('>>> Step: {}'.format(step))

246 self.imposed_u = step / (number_of_steps - 1) * u_max

247 solution = minimize(self.residual, unknowns, method='SLSQP')

248 unknowns = solution.x

249 self.store_animation_frame()

250

251 print('Incognite: {}'.format(unknowns))

252

253 new_row = np.array([[self.imposed_u, self.displacements[5,0], unknowns[controlled_dof
11D

254 if step == 0:

255 load_displacement_curve = new_row

256 else:

257 load_displacement_curve = np.append(load_displacement_curve, new_row, axis=0)

258

259 # self.print_status()

260 print('[{}, {}, {}]'.format(self.frameElementArray[-1].displacements[3,0],

261 self.frameElementArray[-1].displacements([4,0],

262 self.frameElementArray[-1].displacements[5,0]))

263

264 if solver=='my_nr':

265 self.controlled_dof=controlled_dof

266 val_lambda=0

267 red_displacements=np.dot(np.transpose(self.reduction_matrix()), self.displacements)

268 x=np.append(red_displacements, [[val_lambdall, axis=0)

269 for step in range(number_of_steps+1):

270 p_ref = self.reduced_external_forces()

271 if control_strategy == 'displacement':

272 applied_u=(step/(number_of_steps))**1xu_max

273 elif control_strategy=='load':

274 applied_lambda=(step/(number_of_steps))*10

275 elif control_strategy=='arclength':

276 del_s=0.56

277 u = x[:-1]

278 self.displacements = np.dot(self.reduction_matrix(), u)

279 self.store_displaced_coordinates()

280 self.store_frame_elements_displacements()

281

282 residual_forces = self.reduced_internal_forces() - x[-1,0] % p_ref

283 if control_strategy == 'displacement’:

284 residual_constraint_equation = [x[controlled_dof] - applied_ul

285 elif control_strategy=='load':

286 residual_constraint_equation=[x[-1] - applied_lambdal

287 elif control_strategy == 'arclength':

288 u_n=u

289 lambda_n=x[-1]

290 k_tan_0 = self.reduced_geom_nl_stiffness_matrix()

291 v_n = np.linalg.solve(k_tan_0, p_ref)

292 f_n = np.sqrt(l + np.dot(np.transpose(v_n), v_n))[0,0]

293 del_u = v_n/f_nxdel_s

294 del_lambda=1/f_nxdel_s

295 residual_constraint_equation = 1/f_n*x((np.dot(np.transpose(v_n), del_u)+
del_lambda))-del_s

296 residual = np.append(residual_forces, residual_constraint_equation, axis=0)

297

298 exit_iteration = False

299 iteration = 0

300 while exit_iteration is False:

301 iteration+=1

302 k_tan = self.reduced_geom_nl_stiffness_matrix()

303 if control_strategy == 'displacement':

304 a = np.zeros((1, self.active_dofs))

305 al0, controlled_dof] = 1

306 g=0

307 elif control_strategy == 'load':

308 a = np.zeros((1, self.active_dofs))

Page 1 of 4

Figure 102: Structure class: solver method - part 1
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py

309 g=1

310 elif control_strategy == 'arclength':

311 a=1/f_nxnp.transpose(v_n)

312 9=1/f_n

313 jacobian=np.block([[k_tan,-p_ref],[a, gl])

314 x=x-np.linalg.solve(jacobian, residual)

315 u=x[:-1]

316 self.displacements=np.dot(self.reduction_matrix(), u)

317 self.store_displaced_coordinates()

318 self.store_frame_elements_displacements()

319 residual_forces=self.reduced_internal_forces()-x[-1,0]xp_ref

320 if control_strategy == 'displacement':

321 residual_constraint_equation = [x[controlled_dof] - applied_u]

322 elif control_strategy=='load':

323 residual_constraint_equation = [x[-1] - applied_lambdal

324 elif control_strategy == 'arclength':

325 del_u = x[:-1]-u_n

326 del_lambda=(x[-1]-lambda_n)

327 residual_constraint_equation = 1 / f_n * (np.dot(np.transpose(v_n), del_u) +
del_lambda) - del_s

328 residual=np.append(residual_forces, residual_constraint_equation, axis=0)

329 abs_r=np.linalg.norm(residual)

330 if abs_r<=eps_r:

331 print(“"Convergency reached in {} iterations for step nr. {}".format(iteration
, step))

332 exit_iteration=True

333 elif iteration>=max_num_iterations:

334 print("Maximum number of iterations ({}) reached for step nr.{}".format(
max_num_iterations, step))

335 exit_iteration=True

336

337 self.store_animation_frame()

338 val_lambda=x[-1,0]

339

340 det = np.linalg.slogdet(k_tan)[1]

341 new_row = np.array([[step, -ulcontrolled_dof], val_lambda, det, -u[controlled_dof-1
11D

342 if step == 0:

343 load_displacement_curve = new_row

344 else:

345 load_displacement_curve = np.append(load_displacement_curve, new_row, axis=0)

346

347 if solver=='my_nr_arclength':

348 del_s=0.15

349 current_lambda=0

350 u=np.zeros((self.active_dofs, 1))

351 last_correct_u = u

352 u_changing_ratio_sign=1

353 self.displacements=np.dot(self.reduction_matrix(), u)

354 self.store_displaced_coordinates()

355 self.store_frame_elements_displacements()

356

357 p_ref=self.reduced_external_forces()

358 for step in range(number_of_steps+1):

359 #predictor step

360 k_tan = self.reduced_geom_nl_stiffness_matrix()

361 del_u=np.linalg.solve(k_tan, p_ref)

362 k_i=np.dot(np.transpose(p_ref),del_u)/(np.dot(np.transpose(del_u),del_u))

363

364 if step==0:

365 k_0=k_i

366

367 sign=np.sign(k_i/k_B)

368 del_lambda=signxdel_s/(np.sqrt(np.dot(np.transpose(del_u),del_u)))

369 predicted_del_u=del_lambdaxdel_u

370 if step==0:

371 previous_del_u=predicted_del_u

372 previous_del_lambda=del_lambda

373

374

375 vec_1=np.array([[predicted_del_ul[controlled_dof,0], del_lambdal0,0111)

376 vec_2=np.array([[previous_del_u[controlled_dof,0], previous_del_lambda[0,0]]1)

377

378 cos_angle=1/np.linalg.norm(vec_1)*1/np.linalg.norm(vec_2)*np.dot(vec_1,np.transpose(
vec_2))

379 if cos_angle<-0.9:

380 invert_sign=-1

381 else:

382 invert_sign=1

383 # invert_sign=1

384

Page 2 of 4

Figure 103: Structure class: solver method - part 2
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py

385 last_correct_u = u

386 last_correct_lambda=current_lambda

387 current_lambda = current_lambda + del_lambdaxinvert_sign

388 lambda_0 = current_lambda

389 u=u+predicted_del_uxinvert_sign

390 u_0=u

391

392

393 self.displacements = np.dot(self.reduction_matrix(), u)

394 self.store_displaced_coordinates()

395 self.store_frame_elements_displacements()

396

397 g = lambda_0-last_correct_lambhda

398 a = np.transpose(np.subtract(u_0,last_correct_u))

399

400 residual_forces = self.reduced_internal_forces() - current_lambda * self.
reduced_external_forces()

401 residual_constraint_equation = np.dot(np.transpose(u_0-last_correct_u), (u-u_8))+(
lambda_B-last_correct_lambda)*(current_lambda-lambda_0)

402

403 #correction steps

404 iteration=0

405 r = np.linalg.norm(residual_forces)

406 if r <= eps_r:

407 exit_iteration=True

408 print("Convergency reached in {} iterations for step nr. {}".format(iteration,
step))

409 else:

410 exit_iteration = False

411 while exit_iteration is False:

412 iteration+=1

413

414 k_tan = self.reduced_geom_nl_stiffness_matrix()

415 del_uP_next=np.linalg.solve(k_tan, p_ref)

416 del_uG_next=-np.linalg.solve(k_tan, residual_forces)

417 del_lambda=-(residual_constraint_equation+np.dot(a,del_uG_next))/(g+np.dot(a,
del_uP_next))

418 del_u=del_lambdaxdel_uP_next+del_uG_next

419 current_lambda=current_lambda+del_lambda

420 u=u+del_u

421 self.displacements = np.dot(self.reduction_matrix(), u)

422 self.store_displaced_coordinates()

423 self.store_frame_elements_displacements()

424

425 residual_forces = self.reduced_internal_forces() - current_lambda * self.
reduced_external_forces()

426 residual_constraint_equation = np.dot(np.transpose(u_0-last_correct_u), (u-u_0))+(
lambda_0-last_correct_lambda)*(current_lambda-lambda_0)

427 # residual=np.append(residual_forces, residual_constraint_equation,axis=0)

428 r=np.linalg.norm(residual_forces)

429 if r<=eps_r:

430 print("Convergency reached in {} iterations for step nr. {}".format(iteration
, step))

431 exit_iteration=True

432 elif iteration>=max_num_iterations:

433 print("Maximum number of iterations ({}) reached for step nr.{}".format(
max_num_iterations, step))

434 exit_iteration=True

435

436 previous_del_lambda=current_lambda-last_correct_lambda

437 previous_del_u=u-last_correct_u

438

439 self.store_animation_frame()

440 self.lambda_evolution.append(current_lambda)

441

442 det=np.linalg.slogdet(k_tan)[1]

443 new_row = np.array([[step, -ulcontrolled_dof],current_lambda, det, -u[controlled_dof-
111D

444 if step == 0:

445 load_displacement_curve = new_row

446 else:

447 load_displacement_curve = np.append(load_displacement_curve, new_row, axis=0)

448

449 cm=1/2.54

450

451 font = {'family': 'serif’,

452 'weight': 'normal’',

453 'size': 7}

454

455 font_title = {'family': 'serif',

456 ‘weight': 'bold’',
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Figure 104: Structure class: solver method - part 3
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\structure\structure.py

457 ‘size': 8}

458

459 matplotlib.rc('font', *xfont)

460

461 fig, [ax_load_displacement,ax_load_steps,ax_determinant] = plt.subplots(3, 1, figsize=(12xcm
, 18%cm))

462 fig.tight_layout(pad=5)

463 ax_load_displacement.plot(load_displacement_curve[:, 1], load_displacement_curve[:, 2], color
='b', linewidth=0.5, label='Vertical displacement')

464 # ax_load_displacement.plot(load_displacement_curve[:, 4], load_displacement_curve[:, 2],
color="'r', linewidth=0.5, label='Horizontal displacement')

465 ax_determinant.plot(load_displacement_curve[:,0],load_displacement_curve[:,3], color='n'
linewidth=0.5)

466 ax_load_steps.plot(load_displacement_curve[:, 0], load_displacement_curve[:, 2], color='g",
linewidth=0.5)

467 # ax_load_displacement.legend()

468

469 ax_determinant.set_xlabel('Increment nr.')

470 ax_determinant.set_ylabel(r'$ln(det(K_{tan}))$"')

471 ax_determinant.set_title('DETERMINANT',xxfont_title)

472 ax_determinant.grid(True,color=[0.95,0.95,0.95])

473

474 ax_load_steps.set_xlabel('Increment nr.')

475 ax_load_steps.set_ylabel(r'Load parameter - '+r'$\lambda$')

476 ax_load_steps.set_title('LOAD',*xfont_title)

477 ax_load_steps.grid(True,color=[0.95,0.95,0.95])

478

479 ax_load_displacement.set_xlabel(r'Displacement - '+r'$u_i$"')

480 ax_load_displacement.set_ylabel(r'Load parameter - '+r'$\lambda$')

481 ax_load_displacement.set_title('LOAD-DISPLACEMENT CURVE', *xfont_title)

482 ax_load_displacement.grid(True,color=[0.95,0.95,0.95])

483

484 path_directory = r'C://Users/Francesco/Documents/0.0 - DOCUMENTI/0.2 - STUDIO -Universita/1.2
- LM/2.5 - MECCANICA COMPUTAZIONALE 2 (6CFU)/Progetto/CaseStudies/"'

485 fig.savefig(path_directory + str(self.description) + "_charts.pdf", bbox_inches='tight')

486

487 plt.show()

488

489 return self.displacements

Figure 105: Structure class: solver method - part 4

A.6 Running analysis and user interface

The user interface is built with the python library "Kivy”. The user interface allows the user to
insert joints and elements and to perform the analysis. While defining the joints and elements in the
background the running program defines a ”Structure” object and collects the ” TimoshencoBeam” or
"TrussElement” objects and the ”Joint” objects in the ”Structure” object correspondent lists. The

function that runs the analysis is shown in Fig.106.
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File - C:\Users\Francesco\PycharmProjects\Tachyon\old\nonlinear_frame\interface\kv_interface.py

353 def run_nonlinear_analysis(self):

354

355 u_max=float(self.ids.u_max.text)

356 controlled_dof=int(self.ids.controlled_dof.text)
357

358 self.structure.print_structure_informations()
359 self.structure.reset()

360 self.structure.assign_dofs()

361 self.structure.solve_structure_nl_geom_analysis(u_max,controlled_dof)
362 self.update_plot(save_pdf=1)

363 self.structure.plot_animation(mode=1)

364 # self.update_details_box()

Figure 106: Analysis running procedure

A capture of the user interface is shown in Fig.107.

TABLE OF JOINTS

SKETCH

Coordinates Restraints Concentrated loads

P2

Delete Modify Add

1 00 00 True True False 00 00 00
2 00 166.67 False False False 00 00 00
3 00 33333 False False False 00 00 00
4 00 5000 False False False 00 00 00
5 00 666.67 False False False 00 00 00
6 00 83333 False False False 00 00 00
7 00 1000.0 False False False 00 00 00
8 00 1166.67 False False False 00 00 00
9 00 133333 False False False 00 00 00
10 00 1500.0 False False False 0.0 00 00

TABLE OF ELEMENTS DETALLS
>>>Portal

Structure details:

Number ofjonts: a1
Number of clements: 90
Delete Modify Add
1 1 2 2000000 76923.07692307692  10000.0 ~ 8333333.33333333
2 2 3 2000000  76923.07692307692 100000  8333333.33333333;
3 3 4 2000000  76923.07692307692 100000  8333333.33333333
4 4 5 2000000  7692307692307692 100000 8333333 33333333 CONTROLS
5 5 6 2000000  76923.07692307692 100000  8333333.33333333 1 5
6 6 7 2000000 76923.07692307692  10000.0  8333333.33333333; Controlled DOF: Max. u
7 7 8 2000000  76923.07692307692 100000 ~ 8333333.33333333
8 8 9 2000000  76923.07692307692 100000  8333333.33333333
9 9 10 2000000  76923.07692307692 100000  8333333.33333333
10 10 n 2000000  76923.07692307692 100000 8333333333333
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Figure 107: User interface
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